The Visualization for Cyber Security research community (VizSec) addresses longstanding challenges in cyber security by adapting and evaluating information visualization techniques with application to the cyber security domain. This research effort has created many tools and techniques that could be applied to improve cyber security, yet the community has not yet established unified standards for evaluating these approaches to predict their operational validity. In this paper, we survey and categorize the evaluation metrics, components, and techniques that have been utilized in the past decade of VizSec research literature. We also discuss existing methodological gaps in evaluating visualization in cyber security, and suggest potential avenues for future research in order to help establish an agenda for advancing the state-of-the-art in evaluating cyber security visualizations.
Abstract-Non-traditional, relaxed consistency, triple store databases are the backbone of many web companies (e.g., Google Big Table, Amazon Dynamo, and Facebook Cassandra). The Apache Accumulo database is a high performance open source relaxed consistency database that is widely used for government applications. Obtaining the full benefits of Accumulo requires using novel schemas. The Dynamic Distributed Dimensional Data Model (D4M)[http://www.mit.edu/~kepner/D4M] provides a uniform mathematical framework based on associative arrays that encompasses both traditional (i.e., SQL) and non-traditional databases. For non-traditional databases D4M naturally leads to a general purpose schema that can be used to fully index and rapidly query every unique string in a dataset. The D4M 2.0 Schema has been applied with little or no customization to cyber, bioinformatics, scientific citation, free text, and social media data. The D4M 2.0 Schema is simple, requires minimal parsing, and achieves the highest published Accumulo ingest rates. The benefits of the D4M 2.0 Schema are independent of the D4M interface. Any interface to Accumulo can achieve these benefits by using the D4M 2.0 Schema.
Abstract-Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the big data and big compute communities together is an active area of research. The LLGrid team has developed and deployed a number of technologies that aim to provide the best of both worlds. LLGrid MapReduce allows the map/reduce parallel programming model to be used quickly and efficiently in any language on any compute cluster. D4M (Dynamic Distributed Dimensional Data Model) provided a high level distributed arrays interface to the Apache Accumulo database. The accessibility of these technologies is assessed by measuring the effort to use these tools and is typically a few lines of code. The performance is assessed by measuring the insert rate into the Accumulo database. Using these tools a database insert rate of 4M inserts/second has been achieved on an 8 node cluster.
This paper describes a marker-based Augmented Reality system for editing tensor-product Bezier surfaces. It uses both a smallscale multi-marker mat and a two-marker wand as its interactive elements. The multi-marker mat establishes a coordinate frame for the display of the surface. Because of its size, it allows the user to rotate and translate the mat physically, even while editing it. The wand is used to select individual control points and edit their 3D position with respect to the surface's coordinate frame. Differentiation between selection and modification is accomplished through a bimodal association of two markers at the end of the wand. The wand's mode is switched by rolling it between the fingers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.