Having a mixed-cultural membership becomes increasingly common in our modern society. It is thus beneficial in several ways to create Intelligent Virtual Agents (IVAs) that reflect a mixed-cultural background as well, e.g., for educational settings. For research with such IVAs, it is essential that they are classified as non-native by members of a target culture. In this paper, we focus on variations of IVAs’ speech to create the impression of non-native speakers that are identified as such by speakers of two different mother tongues. In particular, we investigate grammatical mistakes and identify thresholds beyond which the agents is clearly categorised as a non-native speaker. Therefore, we conducted two experiments: one for native speakers of German, and one for native speakers of English. Results of the German study indicate that beyond 10% of word order mistakes and 25% of infinitive mistakes German-speaking IVAs are perceived as non-native speakers. Results of the English study indicate that beyond 50% of omission mistakes and 50% of infinitive mistakes English-speaking IVAs are perceived as non-native speakers. We believe these thresholds constitute helpful guidelines for computational approaches of non-native speaker generation, simplifying research with IVAs in mixed-cultural settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.