An advanced receptor model was used to elicit source information based on ambient submicron (0.01-0.47 µm) particle number concentrations, gaseous species, and meteorological variables measured at the New York State Department of Environmental Conservation central monitoring site in Rochester, NY. Four seasonal data sets (winter, spring, summer, and fall) were independently investigated. A total of ten different sources were identified, including two traffic factors, two nucleation factors, industrial emissions, residential/commercial heating, secondary nitrate, secondary sulfate, ozone-rich secondary aerosol, and regionally transported aerosol. The resolved sources were generally characterized by similar number modes for either winter, spring, summer or fall. The size distributions for nucleation were dominated by the smallest particles (<10-30 nm) that gradually grew to larger sizes as could be seen by observing the volume profiles. In addition, the nucleation factors were closely linked to traffic rush hours suggesting that cooling of tail-pipe emissions may have induced nucleation activity in the vicinity of the highways. Although the diurnal pattern of each of the two traffic factors closely followed traffic rush hour for Rochester, their size modes were different suggesting that these factors might represent local and remote emissions. Industrial emissions were dominated by emissions from coal-fired power plants that were located to the northwest of the sampling site. These facilities represent the largest point emission sources of SO 2 , and probably ultrafine (<0.1 µm) or submicron particles, in Rochester. Regionally transported material was characterized by accumulation mode particles. Air parcel back-trajectories showed transport of air masses from the industrial midwest.
This study has shown that continuous measurements of indoor particle number and volume concentrations together with records of personal activities are useful for indoor source apportionment models. Each of the particle sources identified in this study produces distinct size distributions that may be useful in studying the mortality and morbidity effects of airborne particulate matter because they will have different penetrability and deposition patterns.
Protection of public health from the effects of air particulate matter (PM) requires measurements and methods that assess the PM chemical constituents, physical properties, and their sources. Sampling was conducted at three sites in the Baltimore area: a source-oriented (industrial) area in south Baltimore (FMC site), and two receptor area sites (Clifton Park and Ponca Street). FMC measurements were made for the initial 1-month of the project; Clifton measurements lasted for about 2 months, while measurements at Ponca Street lasted for about 9.5 months. Pollutant samples were collected at intervals ranging from 5 min to 1 h using semi-continuous monitors for PM 2.5 mass, sulfate, nitrate, elemental and organic carbon, particle number size distributions (10-20,000 nm), CO, NO x , O 3 , 11 metals, and mass spectra of individual particles, throughout the project. In addition to standard meteorological measurements, a 3D-sonic anemometer and a LIDAR system were operated during selected periods as were a rotating drum impactor with 3-to 6-h resolution and a filter/PUF sampler for 3-h measurements of organic compounds. Standard speciation and FRM mass measurements were also made. This report describes the types of measurements that were made at the various sites of the Baltimore Supersite program as well as presents the summary statistics for some of the PM measurements that have been made. The measurements of aerosol mass, major components, and size distribution data for the three sites are compared. Results show comparable PM concentrations at Ponca Street and Clifton Park. Increased variability was observed at Ponca Street. r
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.