Atherosclerosis and its consequences remain the main cause of mortality in industrialized and developing nations. Plaque burden and progression have been shown to be independent predictors for future cardiac events by intravascular ultrasound. Routine prospective imaging is hampered by the invasive nature of intravascular ultrasound. A noninvasive technique would therefore be more suitable for screening of atherosclerosis in large populations. Here we introduce an elastin-specific magnetic resonance contrast agent (ESMA) for noninvasive quantification of plaque burden in a mouse model of atherosclerosis. The strong signal provided by ESMA allows for imaging with high spatial resolution, resulting in accurate assessment of plaque burden. Additionally, plaque characterization by quantifying intraplaque elastin content using signal intensity measurements is possible. Changes in elastin content and the high abundance of elastin during plaque development, in combination with the imaging properties of ESMA, provide potential for noninvasive assessment of plaque burden by molecular magnetic resonance imaging (MRI).
Background-Heart failure has been associated with impaired cardiac sympathetic neuronal function. Cardiac imaging with radiolabeled agents that are substrates for the neuronal norepinephrine transporter (NET) has demonstrated the potential to identify individuals at risk of cardiac events. N- 18 F]fluoro-propoxy)-benzyl]-guanidine (LMI1195) is a newly developed 18 F-labeled NET substrate designed to allow cardiac neuronal imaging with the high sensitivity, resolution, and quantification afforded by positron emission tomography (PET). Methods and Results-LMI1195 was evaluated in comparison with norepinephrine (NE) in vitro and 123 I-metaiodobenzylguanidine (MIBG) in vivo. The affinity (K i ) of LMI1195 for NET was 5.16Ϯ2.83 mol/L, similar to that of NE (3.36Ϯ2.77 mol/L) in a cell membrane-binding assay. Similarly, LMI1195 uptake kinetics examined in a human neuroblastoma cell line had K m and V max values of 1.44Ϯ0.76 mol/L and 6.05Ϯ3.09 pmol/million cells per minute, comparable to NE (2.01Ϯ0.85 mol/L and 6.23Ϯ1.52 pmol/million cells per minute). In rats, LMI1195 heart uptake at 15 and 60 minutes after intravenous administration was 2.36Ϯ0.38% and 2.16Ϯ0.38% injected dose per gram of tissue (%ID/g), similar to 123 I-MIBG (2.14Ϯ0.30 and 2.19Ϯ0.27%ID/g). However, the heart to liver and lung uptake ratios were significantly higher for LMI1195 than for 123 I-MIBG. In rabbits, desipramine (1 mg/kg), a selective NET inhibitor, blocked LMI1195 heart uptake by 82%, which was more effective than 123 I-MIBG (53%), at 1 hour after dosing. Sympathetic denervation with 6-hydroxydopamine, a neurotoxin, resulted in a marked (79%) decrease in LMI1195 heart uptake. Cardiac PET imaging with LMI1195 in rats, rabbits, and nonhuman primates revealed clear myocardium with low radioactivity levels in the blood, lung, and liver. Imaging in rabbits pretreated with desipramine showed reduced heart radioactivity levels in a dose-dependent manner. Additionally, imaging in sympathetically denervated rabbits resulted in low cardiac image intensity with LMI1195 but normal perfusion images with flurpiridaz F 18, a PET myocardial perfusion imaging agent. In nonhuman primates pretreated with desipramine (0.5 mg/kg), imaging with LMI1195 showed a 66% decrease in myocardial uptake. In a rat model of heart failure, the LMI1195 cardiac uptake decreased as heart failure progressed. Conclusions-LMI1195 is a novel 18 F imaging agent retained in the heart through the NET and allowing evaluation of the cardiac sympathetic neuronal function by PET imaging. (Circ Cardiovasc Imaging. 2011;4:435-443.)
The goal of this research is the development of tumor imaging and radiotherapeutic agents based on targeting of the integrin alpha(v)beta(3) (vitronectin receptor). Macrocyclic chelator DOTA has been conjugated to peptidomimetic vitronectin receptor antagonist SH066 to give TA138. TA138 and (89)Y-TA138 retain antagonist properties and high affinity for integrin alpha(v)beta(3) (IC(50) = 12 and 18 nM, respectively), and good selectivity versus integrin alpha(IIb)beta(3) (IC(50) > 10,000 nM). TA138 forms stable complexes with (111)In and (90)Y in > 95% RCP. (111)In-TA138 demonstrates high tumor uptake in the c-neu Oncomouse (Charles River Laboratories [Charles River, Canada]) mammary adenocarcinoma model (9.39% ID/g at 2 hours PI) and low background activity. Blood clearance is rapid and excretion is renal. Tumors are visible as early as 0.5 hours PI. Radiotherapy studies in the c-neu Oncomouse model demonstrated a slowing of tumor growth at a dose of 15 mCi/m(2), and a regression of tumors at a dose of 90 mCi/m(2).
]-guanidine (18 F-LMI1195) is a new PET tracer designed for noninvasive assessment of sympathetic innervation of the heart. The 18 F label facilitates the imaging advantages of PET over SPECT technology while allowing centralized manufacturing. Highly specific neural uptake of 18 F-LMI1195 has previously been established, but the retention kinetics are not yet fully understood. Methods: Healthy New Zealand White rabbits were studied with 18 F-LMI1195 using a small-animal PET system. Dynamic 40-min chest scans were started just before intravenous bolus injection of 18 F-LMI1195. Imaging was performed under norepineph-rine transport inhibition with desipramine pretreatment, a 1.5 mg/kg desipramine chase administered 10 min after tracer injection, and saline treatment of controls. As a reference, cardiac uptake of 11 C-hydroxyephedrine and 123 I-metaiodobenzylguanidine (123 I-MIBG) was examined by PET and planar scintigraphy, respectively. Results: Cardiac uptake of all 3 tracers was inhibited by pretreatment with desipramine. Stable cardiac tracer retention was delineated by dynamic PET in control rabbits for 11 C-hydroxyephedrine (washout rate, 0.42% ± 0.57%/min) and 18 F-LMI1195 (washout rate, 0.058% ± 0.28%/min). A desipramine chase increased 11 C-hydroxyephedrine washout from the heart (2.43% ± 0.15%/min, P , 0.001), whereas 18 F-LMI1195 washout was not influenced (0.059% ± 0.11%/min, not statistically significant). Additionally, a desipramine chase did not change the cardiac 123 I-MIBG uptake (delayed heart-to-mediastinum ratio, 1.99 ± 0.12 (desipramine chase) vs. 2.05 ± 0.16 (controls), not statistically significant). Conclusion: In vivo norepinephrine transporter (NET) blockade with desipramine confirmed specific neural uptake of 18 F-LMI1195, 11 C-hydroxyephedrine, and 123 I-MIBG in rabbit hearts. 11 C-hydroxyephedrine cardiac retention was sensitive to a NET inhibitor chase, indicating a cycle of continuous NET uptake and release at the nerve terminals. In contrast, 18 F-LMI1195 and 123 I-MIBG demonstrated stable storage at the nerve terminal with resistance to a NET inhibitor chase, mimicking physiologic norepinephrine turnover.
Background-To prospectively evaluate an elastin-specific MR contrast agent (ESMA) for in vivo targeting of elastic fibers in myocardial infarction (MI) and postinfarction scar remodeling. Methods and Results-MI was induced in C57BL/6J mice (n=40) by permanent ligation of the left anterior descending coronary artery. MRI was performed at 7 and 21 days after MI. The merits of gadolinium-based ESMA (Gd-ESMA) were compared with gadopentetic acid (Gd-DTPA) for infarct size determination, contrast-to-noise ratio (CNR), and enhancement kinetics. Specific binding in vivo was evaluated by blocking the molecular target using nonparamagnetic lanthanum-ESMA. In vivo imaging results were confirmed by postmortem triphenyltetrazolium chloride staining, elastica van Gieson staining, and Western blotting. Delayed enhancement MRI revealed prolonged enhancement of Gd-ESMA in the postischemic scar compared with Gd-DTPA. Infarct size measurements showed good agreement between Gd-ESMA and Gd-DTPA and were confirmed by ex vivo triphenyltetrazolium chloride staining. Preinjection of the blocking lanthanum-ESMA resulted in significantly lower CNR of Gd-ESMA at the infarct site (P=0.0019). Although no significant differences in CNR were observed between delayed enhancement imaging and Gd-DTPA between days 7 and 21 (1.8± versus 3.8; P=ns), Gd-ESMA showed markedly higher CNR on day 21 after MI (14.1 versus 4.9; P=0.0032), which correlated with increased synthesis of tropoelastin detected by Western blot analysis and histology. Higher CNR values for Gd-ESMA further correlated with improved ejection fraction of the mice on day 21 after MI. Conclusions-Gd
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.