This study presents an analysis of three models associated with artificial intelligence as tools to forecast the generation of urban solid waste in the city of Bogotá, in order to learn about this type of waste's behavior. The analysis was carried out in such a manner that different efficient alternatives are presented. In this paper, a possible decision-making strategy was explored and implemented to plan and design technologies for the stages of collection, transport and final disposal of waste in cities, while taking into account their particular characteristics. The first model used to analyze data was the decision tree which employed machine learning as a non-parametric algorithm that models data separation limitations based on the learning decision rules on the input characteristics of the model. Support vector machines were the second method implemented as a forecasting model. The primary advantage of support vector machines is their proper adjustment to data despite its variable nature or when faced with problems with a small amount of training data. Lastly, recurrent neural network models to forecast data were implemented, which yielded positive results. Their architectural design is useful in exploring temporal correlations among the same. Distribution by collection zone in the city, socio-economic stratification, population, and quantity of solid waste generated in a determined period of time were factors considered in the analysis of this forecast. The results found that support vector machines are the most appropriate model for this type of analysis.
Resumen El presente articulo realiza una comparación de las normas relevantes a nivel internacional para la definición, clasificación, exclusión, desclasificación e identificación de residuos peligrosos.Dentro de los principales sistemas de clasificación de residuos peligrosos se encuentran: La Convención de Basilea sobre el control de los movimientos transfronterizos de los desechos peligrosos y su eliminación, El Listado Europeo de Residuos (LER) y el Código de Regulación Federal de los Estados Unidos 40 CFR 261.Las tres normas, presentan grandes diferencias en relación a los criterios de clasificación e identificación de un residuo peligroso y, por tanto, frente a sus propios listados de clasificación. Por esta razón, el presente trabajo pretende realizar un análisis crítico comparativo entre las tres regulaciones con el objeto de analizar las ventajas e inconvenientes en relación a la definición, identificación, clasificación, exclusión y desclasificación de residuos peligrosos. Palabras clave: gestión ambiental, residuos sólidos, residuos peligrosos, inflamabilidad, corrosividad, reactividad, tóxicidad.Comparative study of the international significant standards for the definition, exclusion, declassification and identification of hazardous wastes Abstrac In this article the international important standards of hazardous wastes are compared including definition, exclusion, declassification and identification.Some of the main hazardous wastes classification systems are: Basel convention about the control of cross-border movement of hazardous waste and its elimination, the European list of wastes (LER) and the U.S code of federal regulations 40 CFR 261.
The development of methodologies to support decision-making in municipal solid waste (MSW) management processes is of great interest for municipal administrations. Artificial intelligence (AI) techniques provide multiple tools for designing algorithms to objectively analyze data while creating highly precise models. Support vector machines and neuronal networks are formed by AI applications offering optimization solutions at different managing stages. In this paper, an implementation and comparison of the results obtained by two AI methods on a solid waste management problem is shown. Support vector machine (SVM) and long short-term memory (LSTM) network techniques have been used. The implementation of LSTM took into account different configurations, temporal filtering and annual calculations of solid waste collection periods. Results show that the SVM method properly fits selected data and yields consistent regression curves, even with very limited training data, leading to more accurate results than those obtained by the LSTM method.
<p>Pronosticar la generaci&#243;n de residuos s&#243;lidos se ha convertido en un tema fundamental para dimensionar los elementos t&#233;cnicos (generaci&#243;n, recolecci&#243;n, transporte, transferencia, uso y disposici&#243;n final) y pol&#237;ticos (legislaci&#243;n, grupos de inter&#233;s, sostenibilidad financiera) con respecto a la gesti&#243;n integral de residuos s&#243;lidos en megaciudades. Para poder hacer este tipo de predicciones, es necesario dise&#241;ar modelos matem&#225;ticos que permitan el an&#225;lisis de cada variable asociada con esta gesti&#243;n, teniendo en cuenta las particularidades y necesidades locales de gesti&#243;n de residuos.</p><p>Se pueden incluir varios modelos en cada etapa de la gesti&#243;n integral de residuos s&#243;lidos urbanos. Actualmente, existen modelos que utilizan inteligencia artificial para pronosticar la generaci&#243;n de residuos s&#243;lidos urbanos, dise&#241;ar rutas de recolecci&#243;n y seleccionar el tipo de disposici&#243;n final. Sin embargo, es necesario integrar estos modelos que respondan al contexto de cada poblaci&#243;n. Para lograr esto, es necesario conocer las caracter&#237;sticas de cada ciudad, as&#237; como las diferentes variables impl&#237;citas dentro del proceso para desarrollar metodolog&#237;as concretas, que se convierten en herramientas &#250;tiles para las administraciones municipales. Sin embargo, las metodolog&#237;as existentes no incluyen un an&#225;lisis de los impactos asociados con cada etapa del proceso de gesti&#243;n de residuos, como criterio para seleccionar las mejores estrategias de gesti&#243;n.&#160;</p><p>Therefore, this methodological proposal includes a stage to evaluate the possible impacts caused by the selected alternative, for which a life cycle analysis is proposed as a tool to determine possible environmental, economic and social impacts. This analysis will be carried out by gathering the corresponding information, as well as using specific software to obtain the data that feeds the model for subsequent decision-making.</p><p>Esta propuesta introduce diferentes tipos de modelos en cada etapa del proceso para obtener resultados integrales y m&#225;s precisos con respecto a las necesidades de una megaciudad. La propuesta se basa en variables y datos reales de acuerdo con las particularidades de las ciudades, para minimizar los posibles errores en la toma de decisiones. Al introducir herramientas cuantitativas para analizar la gesti&#243;n de residuos s&#243;lidos urbanos, la metodolog&#237;a propuesta omite posibles evaluaciones cualitativas o basadas en la percepci&#243;n, lo que lleva a que los resultados obtenidos sean cada vez m&#225;s realistas, ya que tienen en cuenta las necesidades reales de cada poblaci&#243;n.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.