Abstract. This paper presents a perturbation approach for performing sensitivity analysis of mathematical programming problems. Contrary to standard methods, the active constraints are not assumed to remain active if the problem data are perturbed, nor the partial derivatives are assumed to exist. In other words, all the elements, variables, parameters, Karush-Kuhn-Tucker multipliers, and objective function values may vary provided that optimality is maintained and the general structure of a feasible perturbation (which is a polyhedral cone) is obtained. This allows determining: (a) the local sensitivities, (b) whether or not partial derivatives exist, and (c) if the directional derivative for a given direction exists. A method for the simultaneous obtention of the sensitivities of the objective function optimal value and the primal and dual variable values with respect to data is given. Three examples illustrate the concepts presented and the proposed methodology. Finally, some relevant conclusions are drawn.
An extension of Deprit's elimination of the parallax is proposed. This extension takes advantage of the flexibility of the Lie-Deprit method, when the inverse of the Lie operator is applied in order to calculate the generating function of this Lie transform. We have found that, under certain conditions, a function F n , belonging to the null space of the Lie operator, can be added to the generating function of the transform at each order, so that the argument of the perigee, and therefore the argument of latitude, can be fully removed in the zonal case of the artificial satellite problem.
A scalable second-order analytical orbit propagator programme based on modern and classical perturbation methods is being developed. As a first step in the validation and verification of part of our orbit propagator programme, we only consider the perturbation produced by zonal harmonic coefficients in the Earth’s gravity potential, so that it is possible to analyze the behaviour of the mathematical expressions involved in Delaunay normalization and the Krylov-Bogoliubov-Mitropolsky method in depth and determine their limits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.