We describe a general approach to optimization which we term `Squeaky Wheel'
Optimization (SWO). In SWO, a greedy algorithm is used to construct a solution
which is then analyzed to find the trouble spots, i.e., those elements, that,
if improved, are likely to improve the objective function score. The results of
the analysis are used to generate new priorities that determine the order in
which the greedy algorithm constructs the next solution. This
Construct/Analyze/Prioritize cycle continues until some limit is reached, or an
acceptable solution is found. SWO can be viewed as operating on two search
spaces: solutions and prioritizations. Successive solutions are only indirectly
related, via the re-prioritization that results from analyzing the prior
solution. Similarly, successive prioritizations are generated by constructing
and analyzing solutions. This `coupled search' has some interesting properties,
which we discuss. We report encouraging experimental results on two domains,
scheduling problems that arise in fiber-optic cable manufacturing, and graph
coloring problems. The fact that these domains are very different supports our
claim that SWO is a general technique for optimization
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.