In several yeast-related industries, continuous fermentation systems offer important economical advantages in comparison with traditional systems. Fermentation rates are significantly improved, especially when continuous fermentation is combined with cell immobilization techniques to increase the yeast concentration in the fermentor. Hence the technique holds a great promise for the efficient production of fermented beverages, such as beer, wine and cider as well as bio-ethanol. However, there are some important pitfalls, and few industrial-scale continuous systems have been implemented. Here, we first review the various cell immobilization techniques and reactor setups. Then, the impact of immobilization on cell physiology and fermentation performance is discussed. In a last part, we focus on the practical use of continuous fermentation and cell immobilization systems for beer production.
Alcohol-free beer (AFB) is no longer just a niche product in the beer market. For brewers, this product category offers economic benefits in the form of a growing market and often a lower tax burden and enables brewers to extend their product portfolio and promote responsible drinking. Non-Saccharomyces yeasts are known for their flavor-enhancing properties in food fermentations, and their prevailing inability to ferment maltose and maltotriose sets a natural fermentation limit and can introduce a promising approach in the production of AFB (≤0.5% v/v). Five strains isolated from kombucha, Hanseniaspora valbyensis, Hanseniaspora vineae, Torulaspora delbrueckii, Zygosaccharomyces bailii and Zygosaccharomyces kombuchaensis were compared to a commercially applied AFB strain Saccharomycodes ludwigii and a Saccharomyces cerevisiae brewer's yeast. The strains were characterized for their sugar utilization, phenolic off-flavors, hop sensitivity and flocculation. Trial fermentations were analyzed for extract reduction, ethanol formation, pH drop and final beers were analyzed for amino acids utilization and fermentation by-products. The performance of non-Saccharomyces strains and the commercial AFB strain were comparable during fermentation and production of fermentation by-products. An experienced sensory panel could not discriminate between the non-Saccharomyces AFB and the one produced with the commercial AFB strain, therefore indicating their suitability in AFB brewing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.