SUMMARY1. We examined the export of invertebrates (aquatic and terrestrial) and coarse organic detritus from forested headwaters to aquatic habitats downstream in the coastal mountains of southeast Alaska, U.S.A. Fifty-two small streams (mean discharge range: 1.2-3.6 L s )1 ), representing a geographic range throughout southeast Alaska, were sampled with 250-lm nets either seasonally (April, July, September) or every 2 weeks throughout the year. Samples were used to assess the potential subsidy of energy from fishless headwaters to downstream systems containing fish. 2. Invertebrates of aquatic and terrestrial origin were both captured, with aquatic taxa making up 65-92% of the total. Baetidae, Chironomidae and Ostracoda were most numerous of the aquatic taxa (34, 16 and 8%, respectively), although Coleoptera (mostly Amphizoidae) contributed the greatest biomass (30%). Mites (Acarina) were the most numerous terrestrial taxon, while terrestrial Coleoptera accounted for most of the terrestrial invertebrate biomass. 3. Invertebrates and detritus were exported from headwaters throughout the year, averaging 163 mg invertebrate dry mass stream )1 day )1 and 10.4 g detritus stream . We estimate that every kilometre of salmonid-bearing stream could receive enough energy (prey and detritus) from fishless headwaters to support 100-2000 young-of-the-year (YOY) salmonids. These results illustrate that headwaters are source areas of aquatic and terrestrial invertebrates and detritus, linking upland ecosystems with habitats lower in the catchment.
The utility of microsatellite markers for inferring population size and trend has not been rigorously examined, even though these markers are commonly used to monitor the demography of natural populations. We assessed the ability of a linkage disequilibrium estimator of effective population size (N e ) and a simple capture-recapture estimator of abundance (N) to quantify the size and trend of stable or declining populations (true N = 100-10,000), using simulated Wright-Fisher populations. Neither method accurately or precisely estimated abundance at sample sizes of S = 30 individuals, regardless of true N. However, if larger samples of S = 60 or 120 individuals were collected, these methods provided useful insights into abundance and trends for populations of N = 100-500. At small population sizes (N = 100 or 250), precision of the N e estimates was improved slightly more by a doubling of loci sampled than by a doubling of individuals sampled. In general, monitoring N e proved a more robust means of identifying stable and declining populations than monitoring N over most of the parameter space we explored, and performance of the N e estimator is further enhanced if the N e ⁄ N ratio is low. However, at the largest population size (N = 10,000), N estimation outperformed N e . Both methods generally required ‡ 5 generations to pass between sampling events to correctly identify population trend.
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key "early warning signs" about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37-year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate-driven effects influence mountain goat populations, we developed an age-structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70-year time window (2015-2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., "thermoneutral") summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%-86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate-linked bottom-up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.