The purpose of this review is to highlight the risk factors, clinical presentation, and different surgical management options for vaginal evisceration after vaginal, abdominal, or laparoscopic hysterectomy. We identified all reports of vaginal evisceration after these procedures using sources in the literature from 1900 to the present. We found that a total of 59 patients were reported, 37 (63%) had a prior vaginal hysterectomy, 19 (32%) had a prior abdominal hysterectomy (2 of which were radical hysterectomy), and 3 (5%) had a prior laparoscopic hysterectomy. The majority of these patients were postmenopausal women. Also, the precipitating event was most often sexual intercourse in premenopausal patients and increased intra-abdominal pressure in postmenopausal patients. In addition, the small bowel was the most common organ to eviscerate. Most of the patients presented with vaginal bleeding, pelvic pain, or a protruding mass. We conclude that vaginal evisceration after hysterectomy remains a rare event. It is more often seen after vaginal hysterectomy than after other types of hysterectomy. It can also occur spontaneously or following trauma or vaginal instrumentation, or any event that increases intra-abdominal pressure. Vaginal evisceration represents a surgical emergency, and the approach to therapy for it may be abdominal, vaginal or a combination of the two.
Dynamic near-infrared optical tomographic measurement instrumentation capable of simultaneous bilateral breast imaging, having a capability of four source wavelengths and 32 source-detector fibers for each breast, is described. The system records dynamic optical data simultaneously from both breasts, while verifying proper optical fiber contact with the tissue through implementation of automatic schemes for evaluating data integrity. Factors influencing system complexity and performance are discussed, and experimental measurements are provided to demonstrate the repeatability of the instrumentation. Considerations in experimental design are presented, as well as techniques for avoiding undesirable measurement artifacts, given the high sensitivity and dynamic range (1:10(9)) of the system. We present exemplary clinical results comparing the measured physiologic response of a healthy individual and of a subject with breast cancer to a Valsalva maneuver.
Dielectric spectroscopy is a powerful tool for characterizing and classifying materials based on their electrical properties. In order to perform dielectric measurements on a sample with spatially varying properties, the measuring probe typically is repositioned manually on the surface of the sample for each measurement. In this paper, we present a novel technique, based on a reconfigurable multielectrode array, which facilitates the recording of measurements at various different spatial locations without physically moving the measuring electrodes. By electronically selecting one of the electrodes as the inner line and connecting the remainder of the electrodes together to form the outer line, an open-ended coaxial probe is created, which can be repositioned by simply selecting different electrode combinations; hence the name of a "traveling" coaxial probe. The geometric factor, or the cell constant, of each coaxial probe in the array was estimated from measurements on saline solutions with known electrical characteristics. In order to validate the setup for measurement of dielectric properties of biological cells, the plasma membrane capacitance and cytoplasm conductivity of yeast cells suspended in aqueous solutions were measured and compared to results from published reports. Dielectric spectroscopy imaging was carried out on tissue phantoms made of an agar gel with inclusions consisting of concentrated yeast cell suspensions. Measurements were performed on the phantoms, and the dielectric data were spatially mapped with respect to electrode location. The spatial electrical data correlated precisely with locations of yeast cell inclusions within the phantoms.
In this report we present a brief outline of our technological approaches to developing a comprehensive imaging platform suitable for the investigation of the dynamics of the hemoglobin signal in large tissue structures using NIRS imaging techniques. Our approach includes a combined hardware and software development effort that provides for i) hardware integration, ii) system calibration, iii) data integrity checks, iv) image recovery, v) image enhancement and vi) signal processing. Presented are representative results obtained from human subjects that explore the sensitivity and other capabilities of the measuring system to detect focal hemodynamic responses in the head, breast and limb of volunteers. Results obtained support the contention that time-series NIRS imaging is a powerful and sensitive technique for exploring the hemodynamics of healthy and diseased tissues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.