Biofuels from land-rich tropical countries may help displace foreign petroleum imports for many industrialized nations, providing a possible solution to the twin challenges of energy security and climate change. But concern is mounting that crop-based biofuels will increase net greenhouse gas emissions if feedstocks are produced by expanding agricultural lands. Here we quantify the 'carbon payback time' for a range of biofuel crop expansion pathways in the tropics. We use a new, geographically detailed database of crop locations and yields, along with updated vegetation and soil biomass estimates, to provide carbon payback estimates that are more regionally specific than those in previous studies. Using this cropland database, we also estimate carbon payback times under different scenarios of future crop yields, biofuel technologies, and petroleum sources. Under current conditions, the expansion of biofuels into productive tropical ecosystems will always lead to net carbon emissions for decades to centuries, while expanding into degraded or already cultivated land will provide almost immediate carbon savings. Future crop yield improvements and technology advances, coupled with unconventional petroleum supplies, will increase biofuel carbon offsets, but clearing carbon-rich land still requires several decades or more for carbon payback. No foreseeable changes in agricultural or energy technology will be able to achieve meaningful carbon benefits if crop-based biofuels are produced at the expense of tropical forests.S Supplementary data are available from stacks.iop.org/ERL/3/034001
[1] The 1973 ''Miami Model'' was the first global-scale empirical model of terrestrial net primary productivity (NPP), and its simplicity and relative accuracy has led to its continued use. However, improved techniques to measure NPP in the field and the expanded spatial and temporal range of observations have prompted this study, which reexamines the relationship of climatic variables to NPP. We developed several statistical models with paired climatic variables in order to investigate their relationships to terrestrial NPP. A reference data set of 3023 NPP field observations was compiled for calibration and parameter optimization. In addition to annual mean temperature and precipitation, as in the Miami Model, we chose more ecologically relevant climatic variables including growing degree-days, a soil moisture stress index, and photosynthetically active radiation (PAR). Calculated annual global NPP ranged from 36 to 74 Pg-C yr
À1, comparable with previous studies. Comparisons of geographic patterns of NPP were made using biome and latitudinal averages.
Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria that produce methane, which can be collected and combusted to generate electricity. ADs also reduce odors and pathogens that are common with manure storage and the digested manure can be used as a fertilizer. There are relatively few ADs in the U.S., mainly due to their high capital costs. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model to test the effects of a representative U.S. climate stabilization policy on the adoption of ADs which sell electricity and generate methane mitigation credits. Under such policy, ADs become competitive at producing electricity in 2025, when they receive methane reduction credits and electricity from fossil fuels becomes more expensive. We find that ADs have the potential to generate 5.5% of U.S. electricity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.