A simple and complete derivation of the relation between concentration-based preferential interaction coefficients and integrals over the relevant pair correlation functions is presented for the first time. Certain omissions from the original treatment of pair correlation functions in multicomponent thermodynamics are also addressed. Connections between these concentration-based quantities and the more common molality-based preferential interaction coefficients are also derived. The pair correlation functions and preferential interaction coefficients of both solvent (water) and cosolvent (osmolyte) in the neighborhood of a macromolecule contain contributions from short-range repulsions and generic long-range attractions originating from the macromolecule, as well as from osmolyte-solvent exchange reactions beyond the macromolecular surface. These contributions are evaluated via a heuristic analysis that leads to simple insightful expressions for the preferential interaction coefficients in terms of the volumes excluded to the centers of the water and osmolyte molecules and a sum over the contributions of exchanging sites in the surrounding solution. The preferential interaction coefficients are predicted to exhibit the experimentally observed dependence on osmolyte concentration. Molality-based preferential interaction coefficients that were reported for seven different osmolytes interacting with bovine serum albumin are analyzed using the this formulation together with geometrical parameters reckoned from the crystal structure of human serum albumin. In all cases, the excluded volume contribution, which is the volume excluded to osmolyte centers minus that excluded to water centers in units of V1, exceeds in magnitude the contribution of the exchange reactions. Under the assumption that the exchange contribution is dominated by sites in the first surface-contiguous layer, the ratio of the average exchange constant to its neutral random value is determined for each osmolyte. These ratios all lie in the range 1.0 +/- 0.15, which indicates rather slight deviations from random occupation near the macromolecular surface. Finally, a mechanism is proposed whereby the chemical identity of an osmolyte might be concealed from partially ordered multilayers of water in clefts, grooves, and pits, and its consequences are noted.
A simulated continuous wave electron paramagnetic resonance spectrum of a nitroxide spin label can be obtained from the Fourier transform of a free induction decay. It has been previously shown that the free induction decay can be calculated by solving the time-dependent stochastic Liouville equation for a set of Brownian trajectories defining the rotational dynamics of the label. In this work, a quaternion-based Monte Carlo algorithm has been developed to generate Brownian trajectories describing the global rotational diffusion of a spin-labeled protein. Also, molecular dynamics simulations of two spin-labeled mutants of T4 lysozyme, T4L F153R1, and T4L K65R1 have been used to generate trajectories describing the internal dynamics of the protein and the local dynamics of the spin-label side chain. Trajectories from the molecular dynamics simulations combined with trajectories describing the global rotational diffusion of the protein are used to account for all of the dynamics of a spin-labeled protein. Spectra calculated from these combined trajectories correspond well to the experimental spectra for the buried site T4L F153R1 and the helix surface site T4L K65R1. This work provides a framework to further explore the modeling of the dynamics of the spin-label side chain in the wide variety of labeling environments encountered in site-directed spin labeling studies.
Both theory and experiments are employed to investigate the effects of small neutral osmolytes on the average intrinsic twist (l0), the torsion and bending elastic constants, and the twist energy parameter (ET) that governs the supercoiling free energy. The experimental data for ethylene glycol and acetamide at 37 degrees C suggest, and are interpreted in terms of, a model wherein the DNA exhibits an equilibrium between two distinct conformational states that possess different numbers of bound water molecules and exhibit different intrinsic twists and torsion and bending elastic constants. Expressions are derived to relate the effective ET and l0 to the equilibrium constant, water activity (aw), and number (n) of bound water molecules released per cooperative domain undergoing the two-state transition. The variations of l0 and ET with -ln(aw) are similar for acetamide and ethylene glycol at 37 degrees C. Fitting the theory to those data yields the range n = 103-125 for ethylene glycol and n = 71-113 for acetamide, depending on the assumed value of ET for the dehydrated state. The cooperative domain size of the two-state transition is estimated to exceed about 25-30 base pairs (bp). Between 0 and 19.4 w/v % ethylene glycol, the torsion elastic constant, measured by time-resolved fluorescence polarization anisotropy (FPA), increases by 1.37-fold, whereas the measured ET decreases by 1.15-fold over that same range. The implied decrease in bending rigidity over that range is by a factor of about 0.7. The variations of l0 and ET with increasing -ln(aw) due to added ethylene glycol at 37 degrees C are far smaller than the corresponding variations observed previously at 14 and 15 degrees C. However, at 21 degrees C, upon adding either ethylene glycol or acetamide, l0 and ET initially decline steeply with increasing -ln(aw), with slopes possibly comparable to those seen at 14 and 15 degrees C, but then flatten out and follow curves similar to those at 37 degrees C. Possible origins of such mixed behavior are discussed. The effects of betaine at both 37 and 21 degrees C differ qualitatively and quantitatively in various respects from those of ethylene glycol and acetamide. Upon adding sucrose, l0 initially jumps to higher plateaus at both 37 and 21 degrees C, but its effects on ET cannot be reliably assessed, due to the limited range of -ln(aw).
Mesoscopic models of unmelted and locally melted supercoiled DNAs in 20 mM ionic strength are simulated over a range of linking difference from deltal = 0 to -26 turns, or superhelix density from sigma = 0 to -0.062. A domain containing m = 0, 28, or 56 melted basepairs (out of 4349 total) is modeled simply by a region of suitable length with substantially reduced torsion and bending elastic constants. Average structural properties are calculated from the saved configurations, and a reversible work protocol is used to calculate the supercoiling free energy, The cross-writhe between duplex and melted regions (defined herein) is found to be negligibly small. The total writhe, radius of gyration, and ordered elements of the diagonalized inertial tensor are found to be nearly universal functions of the residual linking difference (deltal(r)) associated with the duplex region, independent of m. However, deformability of the tertiary structure, as manifested by the variance of those same properties, is not a universal function of deltal(r)), but depends upon m.delta (SC) varies with deltal(r)) more strongly than deltal(r)) (2)due to the low ionic strength. The twist energy parameter, E (T) obtained from the simulated delta G(SC), deltal(r)), and net twisting strain of the melted region T (D), is found to be independent of m, hence also of the torsion and bending elastic constants of the melted region. However, E(T) increases linearly with -deltalr), which leads to 1). a small overestimation of E (T) for any given deltal(r)) when E(T) is determined from the observed deltal and deltal (r) by the protocol of Bauer and Benham; and 2). a significant enhancement of the apparent slope, -dE(T)/d(T), obtained via the protocol of Bauer and Benham, relative to the actual slope at fixed delta l(r). After taking these two effects into account, the theoretical and experimental values E(T) and -dE(T)/d(T) values agree rather well. For the larger deltal the melted regions are found preferentially in the linker domains between interwound arms, rather than in the apical regions at the ends of interwound arms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.