BackgroundTranscript profiling of differentiating secondary xylem has allowed us to draw a general picture of the genes involved in wood formation. However, our knowledge is still limited about the regulatory mechanisms that coordinate and modulate the different pathways providing substrates during xylogenesis. The development of compression wood in conifers constitutes an exceptional model for these studies. Although differential expression of a few genes in differentiating compression wood compared to normal or opposite wood has been reported, the broad range of features that distinguish this reaction wood suggest that the expression of a larger set of genes would be modified.ResultsBy combining the construction of different cDNA libraries with microarray analyses we have identified a total of 496 genes in maritime pine (Pinus pinaster, Ait.) that change in expression during differentiation of compression wood (331 up-regulated and 165 down-regulated compared to opposite wood). Samples from different provenances collected in different years and geographic locations were integrated into the analyses to mitigate the effects of multiple sources of variability. This strategy allowed us to define a group of genes that are consistently associated with compression wood formation. Correlating with the deposition of a thicker secondary cell wall that characterizes compression wood development, the expression of a number of genes involved in synthesis of cellulose, hemicellulose, lignin and lignans was up-regulated. Further analysis of a set of these genes involved in S-adenosylmethionine metabolism, ammonium recycling, and lignin and lignans biosynthesis showed changes in expression levels in parallel to the levels of lignin accumulation in cells undergoing xylogenesis in vivo and in vitro.ConclusionsThe comparative transcriptomic analysis reported here have revealed a broad spectrum of coordinated transcriptional modulation of genes involved in biosynthesis of different cell wall polymers associated with within-tree variations in pine wood structure and composition. In particular, we demonstrate the coordinated modulation at transcriptional level of a gene set involved in S-adenosylmethionine synthesis and ammonium assimilation with increased demand for coniferyl alcohol for lignin and lignan synthesis, enabling a better understanding of the metabolic requirements in cells undergoing lignification.
BackgroundPinus pinaster is an economically and ecologically important species that is becoming a woody gymnosperm model. Its enormous genome size makes whole-genome sequencing approaches are hard to apply. Therefore, the expressed portion of the genome has to be characterised and the results and annotations have to be stored in dedicated databases.DescriptionEuroPineDB is the largest sequence collection available for a single pine species, Pinus pinaster (maritime pine), since it comprises 951 641 raw sequence reads obtained from non-normalised cDNA libraries and high-throughput sequencing from adult (xylem, phloem, roots, stem, needles, cones, strobili) and embryonic (germinated embryos, buds, callus) maritime pine tissues. Using open-source tools, sequences were optimally pre-processed, assembled, and extensively annotated (GO, EC and KEGG terms, descriptions, SNPs, SSRs, ORFs and InterPro codes). As a result, a 10.5× P. pinaster genome was covered and assembled in 55 322 UniGenes. A total of 32 919 (59.5%) of P. pinaster UniGenes were annotated with at least one description, revealing at least 18 466 different genes. The complete database, which is designed to be scalable, maintainable, and expandable, is freely available at: http://www.scbi.uma.es/pindb/. It can be retrieved by gene libraries, pine species, annotations, UniGenes and microarrays (i.e., the sequences are distributed in two-colour microarrays; this is the only conifer database that provides this information) and will be periodically updated. Small assemblies can be viewed using a dedicated visualisation tool that connects them with SNPs. Any sequence or annotation set shown on-screen can be downloaded. Retrieval mechanisms for sequences and gene annotations are provided.ConclusionsThe EuroPineDB with its integrated information can be used to reveal new knowledge, offers an easy-to-use collection of information to directly support experimental work (including microarray hybridisation), and provides deeper knowledge on the maritime pine transcriptome.
-Conifers are of great economic and ecological importance, but little is known concerning their genomic organization. This study is an attempt to obtain high-quality high-molecular-weight DNA from Pinus pinaster cotyledons and the construction of a pine BAC library. The preparation incorporates modifications like low centrifugation speeds, increase of EDTA concentration for plug maintenance, use of DNase inhibitors to reduce DNA degradation, use of polyvinylpyrrolidone and ascorbate to avoid secondary metabolites, and a brief electrophoresis of the plugs prior to their use. A total of 72 192 clones with an average insert size of 107 kb, which represents an equivalent of 11X pine haploid genomes, were obtained. The proportions of clones lacking inserts or containing chloroplast DNA are both approximately 1.6%. The library was screened with cDNA probes for seven genes, and two clones containing Fd-GOGAT sequences were found, one of them seemingly functional. Ongoing projects aimed at constructing a pine bacterial artificial chromosome library may benefit from the methods described here.
We report the molecular characterization and functional analysis of a gene (PsdOAT) from Scots pine (Pinus sylvestris) encoding Orn-d-aminotransferase (d-OAT; EC 2.6.1.13), an enzyme of arginine metabolism. The deduced amino acid sequence contains a putative N-terminal signal peptide for mitochondrial targeting. The polypeptide is similar to other d-OATs from plants, yeast, and mammals and encoded by a single-copy gene in pine. PsdOAT encodes a functional d-OAT as determined by expression of the recombinant protein in Escherichia coli and analysis of the active enzyme. The expression of PsdOAT was undetectable in the embryo, but highly induced at early stages of germination and seedling development in all different organs. Transcript levels decreased in later developmental stages, although an increase was observed in lignified stems of 90-d-old plants. An increase of d-OAT activity was observed in germinating embryos and seedlings and appears to mirror the observed alterations in PsdOAT transcript levels. Similar expression patterns were also observed for genes encoding arginase and isocitrate dehydrogenase. Transcripts of PsdOAT and the arginase gene were found widely distributed in different cell types of pine organs. Consistent with these results a metabolic pathway is proposed for the nitrogen flow from the megagametophyte to the developing seedling, which is also supported by the relative abundance of free amino acids in embryos and seedlings. Taken together, our data support that d-OAT plays an important role in this process providing glutamate for glutamine biosynthesis during early pine growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.