Members of the neuregulin-1 (Nrg1) growth factor family play important roles during Schwann cell development. Recently, it has been shown that the membrane-bound type III isoform is required for Schwann cell myelination. Interestingly, however, Nrg1 type II, a soluble isoform, inhibits the process. The mechanisms underlying these isoform-specific effects are unknown. It is possible that myelination requires juxtacrine Nrg1 signaling provided by the membrane-bound isoform, whereas paracrine stimulation by soluble Nrg1 inhibits the process. To investigate this, we asked whether Nrg1 type III provided in a paracrine manner would promote or inhibit myelination. We found that soluble Nrg1 type III enhanced myelination in Schwann cell-neuron cocultures. It improved myelination of Nrg1 type III ϩ/Ϫ neurons and induced myelination on normally nonmyelinated sympathetic neurons. However, soluble Nrg1 type III failed to induce myelination on Nrg1 type III Ϫ/Ϫ neurons. To our surprise, low concentrations of Nrg1 type II also elicited a similar promyelinating effect. At high doses, however, both type II and III isoforms inhibited myelination and increased c-Jun expression in a manner dependent on Mek/Erk (mitogen-activated protein kinase kinase/extracellular signal-regulated kinase) activation. These results indicate that paracrine Nrg1 signaling provides concentration-dependent bifunctional effects on Schwann cell myelination. Furthermore, our studies suggest that there may be two distinct steps in Schwann cell myelination: an initial phase dependent on juxtacrine Nrg1 signaling and a later phase that can be promoted by paracrine stimulation.
Physical damage to the peripheral nerves triggers Schwann cell injury response in the distal nerves in an event termed Wallerian degeneration: the Schwann cells degrade their myelin sheaths and de-differentiate, reverting to a phenotype that supports axon regeneration and nerve repair. The molecular mechanisms regulating Schwann cell plasticity in the PNS remain to be elucidated. Using both in vivo and in vitro models for peripheral nerve injury, here we show that inhibition of p38 MAPK activity in mice blocks Schwann cell demyelination and de-differentiation following nerve injury, suggesting that the kinase mediates the injury signal that triggers distal Schwann cell injury response. In myelinating co-cultures, p38 MAPK also mediates myelin breakdown induced by Schwann cell growth factors, such as neuregulin and FGF-2. Furthermore, ectopic activation of p38 MAPK is sufficient to induce myelin breakdown and drives differentiated Schwann cells to acquire phenotypic features of immature Schwann cells. We also show that p38 MAPK concomitantly functions as a negative regulator of Schwann cell differentiation: enforced p38 MAPK activation blocks cAMP-induced expression of Krox 20 and myelin proteins, but induces expression of c-Jun. As expected of its role as a negative signal for myelination, inhibition of p38 MAPK in co-cultures promotes myelin formation by increasing the number as well as the length of individual myelin segments. Altogether, our data identify p38 MAPK as an important regulator of Schwann cell plasticity and differentiation.
Peripheral nerve injury is followed by a wave of Schwann cell proliferation in the distal nerve stumps. To resolve the role of Schwann cell proliferation during functional recovery of the injured nerves, we used a mouse model in which injury-induced Schwann cell mitotic response is ablated via targeted disruption of cyclin D1. In the absence of distal Schwann cell proliferation, axonal regeneration and myelination occur normally in the mutant mice and functional recovery of injured nerves is achieved. This is enabled by pre-existing Schwann cells in the distal stump that persist but do not divide. On the other hand, in the wild type littermates, newly generated Schwann cells of injured nerves are culled by apoptosis. As a result, distal Schwann cell numbers in wild type and cyclin D1 null mice converge to equivalence in regenerated nerves. Therefore, distal Schwann cell proliferation is not required for functional recovery of injured nerves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.