High-dose IL-2 treatment seems to benefit some patients with metastatic melanoma by producing durable CRs or PRs and should be considered for appropriately selected melanoma patients.
We present measurements of the baryon acoustic peak at redshifts z = 0.44, 0.6 and 0.73 in the galaxy correlation function of the final data set of the WiggleZ Dark Energy Survey. We combine our correlation function with lower redshift measurements from the 6-degree Field Galaxy Survey and Sloan Digital Sky Survey, producing a stacked survey correlation function in which the statistical significance of the detection of the baryon acoustic peak is 4.9σ relative to a zero-baryon model with no peak. We fit cosmological models to this combined baryon acoustic oscillation (BAO) data set comprising six distance-redshift data points, and compare the results with similar cosmological fits to the latest compilation of supernovae (SNe) and cosmic microwave background (CMB) data. The BAO and SNe data sets produce consistent measurements of the equation-of-state w of dark energy, when separately combined with the CMB, providing a powerful check for systematic errors in either of these distance probes. Combining all data sets we determine w = −1.03 ± 0.08 for a flat universe, consistent with a cosmological constant model. Assuming dark energy is a cosmological constant and varying the spatial curvature, we find k = −0.004 ± 0.006.
High-dose IL-2 appears to benefit some patients with metastatic renal cell carcinoma by producing durable CRs or PRs. Despite severe acute treatment-associated toxicities, IL-2 should be considered for initial therapy of patients with appropriately selected metastatic renal cell carcinoma.
We present a joint cosmological analysis of weak gravitational lensing observations from the Kilo-Degree Survey (KiDS-1000), with redshift-space galaxy clustering observations from the Baryon Oscillation Spectroscopic Survey (BOSS) and galaxy-galaxy lensing observations from the overlap between KiDS-1000, BOSS, and the spectroscopic 2-degree Field Lensing Survey. This combination of large-scale structure probes breaks the degeneracies between cosmological parameters for individual observables, resulting in a constraint on the structure growth parameter S8 = σ8√(Ωm/0.3) = 0.766−0.014+0.020, which has the same overall precision as that reported by the full-sky cosmic microwave background observations from Planck. The recovered S8 amplitude is low, however, by 8.3 ± 2.6% relative to Planck. This result builds from a series of KiDS-1000 analyses where we validate our methodology with variable depth mock galaxy surveys, our lensing calibration with image simulations and null-tests, and our optical-to-near-infrared redshift calibration with multi-band mock catalogues and a spectroscopic-photometric clustering analysis. The systematic uncertainties identified by these analyses are folded through as nuisance parameters in our cosmological analysis. Inspecting the offset between the marginalised posterior distributions, we find that the S8-difference with Planck is driven by a tension in the matter fluctuation amplitude parameter, σ8. We quantify the level of agreement between the cosmic microwave background and our large-scale structure constraints using a series of different metrics, finding differences with a significance ranging between ∼3σ, when considering the offset in S8, and ∼2σ, when considering the full multi-dimensional parameter space.
Treatment with TILs and IL-2 with or without cyclophosphamide can result in objective responses in about one third of patients with metastatic melanoma. The side effects of treatment are transient in most patients, and this treatment can be safely administered. These results illustrate the potential value of immune lymphocytes for the treatment of patients with melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.