In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
High-mobility group box 1 protein (HMGB1), which previously was thought to function only as a nuclear factor that enhances transcription, was recently discovered to be a crucial cytokine that mediates the response to infection, injury and inflammation. These observations have led to the emergence of a new field in immunology that is focused on understanding the mechanisms of HMGB1 release, its biological activities and its pathological effects in sepsis, arthritis, cancer and other diseases. Here, we discuss these features of HMGB1 and summarize recent advances that have led to the preclinical development of therapeutics that modulate HMGB1 release and activity.
Beclin 1, the mammalian orthologue of yeast Atg6, has a central role in autophagy, a process of programmed cell survival, which is increased during periods of cell stress and extinguished during the cell cycle. It interacts with several cofactors (Atg14L, UVRAG, Bif-1, Rubicon, Ambra1, HMGB1, nPIST, VMP1, SLAM, IP 3 R, PINK and survivin) to regulate the lipid kinase Vps-34 protein and promote formation of Beclin 1-Vps34-Vps15 core complexes, thereby inducing autophagy. In contrast, the BH3 domain of Beclin 1 is bound to, and inhibited by Bcl-2 or Bcl-XL. This interaction can be disrupted by phosphorylation of Bcl-2 and Beclin 1, or ubiquitination of Beclin 1. Interestingly, caspase-mediated cleavage of Beclin 1 promotes crosstalk between apoptosis and autophagy. Beclin 1 dysfunction has been implicated in many disorders, including cancer and neurodegeneration. Here, we summarize new findings regarding the organization and function of the Beclin 1 network in cellular homeostasis, focusing on the cross-regulation between apoptosis and autophagy. Cell Death and Differentiation (2011) 18, 571-580; doi:10.1038/cdd.2010 published online 11 February 2011 Autophagy is an essential process that consists of selective degradation of cellular components. There are at least three different types of autophagy described and possibly more. These autophagy types include macroautophagy (hereafter referred to as autophagy), microautophagy and chaperonemediated autophagy. 1 The initial step of autophagy is the surrounding and sequestering of cytoplasmic organelles and proteins within an isolation membrane (phagophore). Potential sources for the membrane to generate the phagophore include the Golgi complex, endosomes, the endoplasmic reticulum (ER), mitochondria and the plasma membrane. 2 The nascent membranes are fused at their edges to form double-membrane vesicles, called autophagosomes. Autophagosomes undergo a stepwise maturation process, including fusion with acidified endosomal and/or lysosomal vesicles, eventually leading to the delivery of cytoplasmic contents to lysosomal components, where they fuse, then degrade and are recycled (Figure 1a). The process of mammalian autophagy is divided into six principal steps: initiation (Figure 1b It has been well demonstrated that autophagy depends on Atg5/Atg7, is associated with microtubule-associated protein light chain 3 (LC3) truncation and lipidation, and may originate directly from the ER membrane and other membrane organelles. Furthermore, recent study has identified a Atg5/Atg7-independent pathway of autophagy. 3 This pathway of autophagy was not associated with LC3 processing but appeared to involve autophagosome formation from late endosomes and the trans-Golgi. 3 Atg7-independent autophagy had been implicated in mitochondrial clearance from reticulocytes. 4 The exact molecular basis of Atg5/Atg7-independent autophagy remains to be elucidated. Interestingly, Beclin 1 is required for Atg5/Atg7-dependent and -independent autophagy. 3 However, the presence of Beclin 1-indep...
High-dose IL-2 treatment seems to benefit some patients with metastatic melanoma by producing durable CRs or PRs and should be considered for appropriately selected melanoma patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.