In 'colored-hearing' synesthesia, individuals report color experiences when they hear spoken words. If the synesthetic color experience resembles that of normal color perception, one would predict activation of parts of the visual system specialized for such perception, namely the human 'color center', referred to as either V4 or V8. Using functional magnetic resonance imaging (fMRI), we here locate the region activated by speech in synesthetes to area V4/V8 in the left hemisphere, and demonstrate overlap with V4/V8 activation in normal controls in response to color. No activity was detected in areas V1 or V2, suggesting that activity in primary visual cortex is not necessary for such experience. Control subjects showed no activity in V4/V8 when imagining colors in response to spoken words, despite overtraining on word-color associations similar to those spontaneously reported by synesthetes.
Virtual environments (VEs) are extensively used in training but there have been few rigorous scientific investigations of whether and how skills learned in a VE are transferred to the real world. This research aimed to measure and evaluate what is transferring from training a simple sensorimotor task in a VE to real world performance. In experiment 1, real world performances after virtual training, real training and no training were compared. Virtual and real training resulted in equivalent levels of post-training performance, both of which significantly exceeded task performance without training. Experiments 2 and 3 investigated whether virtual and real trained real world performances differed in their susceptibility to cognitive and motor interfering tasks (experiment 2) and in terms of spare attentional capacity to respond to stimuli and instructions which were not directly related to the task (experiment 3). The only significant difference found was that real task performance after training in a VE was less affected by concurrently performed interference tasks than was real task performance after training on the real task. This finding is discussed in terms of the cognitive load characteristics of virtual training. Virtual training therefore resulted in equivalent or even better real world performance than real training in this simple sensorimotor task, but this finding may not apply to other training tasks. Future research should be directed towards establishing a comprehensive knowledge of what is being transferred to real world performance in other tasks currently being trained in VEs and investigating the equivalence of virtual and real trained performances in these situations.
Age-related decline in allocentric (viewer-independent) spatial memory is seen across species. We employed a virtual reality analogue of the Morris Water Maze to study the effect of healthy ageing on neural activity during allocentric spatial memory using functional magnetic resonance imaging. Voxel-based morphometry was used to ascertain hippocampal volumetric integrity. A widespread neural network comprising frontal, parietal, occipital, thalamic, and cerebellar regions was activated in young and older adults, but only young adults significantly activated bilateral hippocampus and left parahippocampus, as well as right frontal pole and dorso-lateral prefrontal cortex (DLPFC) during encoding and right DLPC during retrieval. Hippocampal grey matter volume was unchanged in older adults; however, prefrontal and parahippocampal functional attenuation was accompanied by volumetric reduction. We conclude that the decline in allocentric spatial memory with age is associated with attenuated hippocampal function, as well as compromised function and structure of prefrontal and parahippocampal regions.
Hippocampal activation was investigated, comparing allocentric and egocentric spatial memory. Healthy participants were immersed in a virtual reality circular arena, with pattern-rendered walls. In a viewpoint-independent task, they moved toward a pole, which was then removed. They were relocated to another position and had to move to the prior location of the pole. For viewpoint-dependent memory, the participants were not moved to a new starting point, but the patterns were rotated to prevent them from indicating the final position. Hippocampal and parahippocampal activation were found in the viewpoint-independent memory encoding phase. Viewpoint-dependent memory did not result in such activation. These results suggest differential activation of the hippocampal formation during allocentric encoding, in partial support of the spatial mapping hypothesis as applied to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.