The three-point amplitude is the key building block in the on-shell approach to scattering amplitudes. We show that the classical objects computed by massive three-point amplitudes in gauge theory and gravity are Newman-Penrose scalars in a split-signature spacetime, where three-point amplitudes can be defined for real kinematics. In fact, the quantum state set up by the particle is a coherent state fully determined by the three-point amplitude due to an eikonal-type exponentiation. Having identified this simplest classical solution from the perspective of scattering amplitudes, we explore the double copy of the Newman-Penrose scalars induced by the traditional double copy of amplitudes, and find that it coincides with the Weyl version of the classical double copy. We also exploit the Kerr-Schild version of the classical double copy to determine the exact spacetime metric in the gravitational case. Finally, we discuss the direct implication of these results for Lorentzian signature via analytic continuation.
The double copy formalism provides an intriguing connection between gauge theories and gravity. It was first demonstrated in the perturbative context of scattering amplitudes but recently the formalism has been applied to exact classical solutions in gauge theories such as the monopole and instanton. In this paper we will investigate how duality symmetries in the gauge theory double copy to gravity and relate these to solution generating transformations and the action of SL(2, R) in general relativity.
The classical double copy relates solutions to the equations of motion in gauge theory and in gravity. In this paper, we present two double-copy formalisms for relating the Coulomb solution in gauge theory to the two-parameter Janis-Newman-Winicour solution in gravity. The latter is a static, spherically symmetric, asymptotically flat solution that generically includes a dilaton field, but also admits the Schwarzschild solution as a special case. We first present the classical double copy as a perturbative construction, similar to its formulation for scattering amplitudes, and then present it as an exact map, with a novel generalisation of the Kerr-Schild double copy motivated by double field theory. The latter formalism exhibits the relation between the Kerr-Schild classical double copy and the string theory origin of the double copy for scattering amplitudes.
Recent work has shown how on-shell three-point amplitudes in gauge theory and gravity, representing the coupling to massive particles, correspond in the classical limit to the curvature spinors of linearised solutions. This connection, made explicit via the KMOC formalism in split metric signature, turns the double copy of scattering amplitudes into the double copy of classical solutions. Here, we extend this framework to the universal massless sector of supergravity, which is the complete double copy of pure gauge theory. Our extension relies on a Riemann-Cartan curvature incorporating the dilaton and the B-field. In this setting, we can determine the most general double copy arising from the product of distinct gauge theory solutions, say a dyon and $$ \sqrt{\mathrm{Kerr}} $$ Kerr . This gives a double-copy interpretation to gravity solutions of the type Kerr-Taub-NUT-dilaton-axion. We also discuss the extension to heterotic gravity. Finally, we describe how this formalism for the classical double copy relates to others in the literature, namely (i) why it is an on-shell momentum space analogue of the convolutional prescription, and (ii) why a straightforward prescription in position space is possible for certain vacuum solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.