<p><span>This paper presents a system that helps farmers to irrigate crops, minimizing water consumption, while productivity is kept, when deficit irrigation techniques are applied, according to the phenological stage of such crop. Such stage is automatically inferred by using a Machine Learning-based technique, which uses single images, which can be acquired by simply using a low cost commercial camera (even the one embedded in a smartphone), as inputs. Specifically, this work compares several Machine Learning approaches, in particular, classical and deep neural networks trained with a dataset obtained from taking multiple real images from a citrus crop. Such images represent different growing stages of the citrus associated to different phenological stages. Since, according to the deficit irrigation approach, the amount of water that can be reduced without affecting the yield depends on the phenological stage of the crop, once such stage is inferred, a Decision Support System uses such information for automatically programming irrigation. The paper also remarks the main advantages of using a single camera as unique sensor in terms of low economic cost as opposed to other systems that uses more expensive and invasive sensors in the crop. In addition, as a smartphone camera could be used as sensor, the smartphone itself could be used as computing device to run the phenological stage detector in real time, and to interact with the Decision Support System by using Cloud and Edge computing technologies. Finally, a set of experiments show the main results obtained after testing different Machine Learning approaches. After comparing such approaches, the best choice is selected to be integrated as a part of the mentioned Decision Support System.</span></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.