<p style="text-align: justify;"><strong>Aims</strong>: The impact of water deficit stress on vine shoot growth, berry weight, grape composition and overall vintage quality was investigated in Bordeaux vineyards. Methods for assessing water deficit stress were compared.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Vine water status was assessed on three soil types during four vintages by means of stem water potential and carbon isotope discrimination measured on grape sugar. Regional water deficit was compared for a range of over 30 vintages by means of water balance modelling. It was shown that water deficit stress anticipated shoot growth slackening, limited berry weight and enhanced berry anthocyanin content. Berry sugar content was greatest when water deficit was mild. It was shown that stem water potential measurements and carbon isotope discrimination are accurate tools for assessing vine water status at plot scale. Seasonal water deficit at a regional scale can be correctly estimated by water balance models. Vintage quality in Bordeaux is determined by the intensity of water deficit stress rather than by the level of the temperatures.</p><p style="text-align: justify;"><strong>Conclusions</strong>: Vine phenology and grape ripening are highly dependent on water uptake conditions. Mild water deficit stress enhances grape quality for the production of red wines. Vine water status can accurately be assessed by means of stem water potential or carbon isotope discrimination measured on grape sugars. Quality losses through severe water stress can be avoided through the use of drought-adapted plant material, appropriate canopy management, yield reduction or the implementation of deficit irrigation.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This study shows the key role of water deficits in the production of quality grapes for red wine production. Methods for assessing vine water status are compared and discussed. Among many existing methods, the accuracy of stem water potential, carbon isotope discrimination measured on grape sugar and water balance modelling are emphasized.</p>
Measuring seasonal plant water status is critical in choosing appropriate management strategies to ensure yields and quality of agricultural products, particularly in a context of climate change. Water status of grapevines is known to be a key factor for yield, grape composition, and wine quality. Predawn leaf water potential (PLWP) and stem water potential (SWP) proved to be simple and precise indicators for assessing grapevine water status and subsequent same-day spatial comparisons. A drawback of SWP is that it does not allow for temporal comparisons, because the measured value is impacted both by soil water availability and climatic conditions on the day of measurement. The objectives of this study are i) to provide a model that separates the effect of soil water content from the effect of climatic conditions on the SWP value and ii) to standardize the SWP value to a value under predefined reference climatic conditions in order to compare SWP values collected under different climatic conditions. SWP and PLWP were temporally assessed on three soil types in Saint-Émilion (Bordeaux, France) in 2015 and on five soil types in Margaux (Bordeaux, France) in 2018 using a pressure chamber. SWP measurements on two consecutive days with contrasting climatic conditions allowed to assess the impact of these conditions on SWP values. A large portion of the variability in SWP values was explained by PLWP. Model selection further showed that the addition of maximum air temperature and seasonality explained a significant amount of the remaining variability in SWP values. SWP values could be successfully standardized to a theoretical value under reference climatic conditions, which allows for temporal comparisons of SWP values. A plant-based measurement, such as the water potential, can be considered as the most straightforward indicator of plant water status as it integrates the effects of soil, plant, and atmospheric conditions. More precise interpretation of SWP values provides winegrowers with a tool to more adequately implement short- and long-term management strategies to adapt to drought in order to ensure yield and grape quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.