Infrared thermal imaging (IRI) is a contact-less technology able to monitor human skin temperature for biomedical applications and in real-life contexts. Its capacity to detect fever was exploited for mass screening during past epidemic emergencies as well as for the current COVID-19 pandemic. However, the only assessment of fever may not be selective for the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Hence, novel approaches for IRI data analysis have been investigated. The present review aims to describe how IRI have been employed during the last epidemics, highlighting the potentialities and the limitations of this technology to contain the contagions. Specifically, the methods employed for automatic face recognition and fever assessment and IRI’s performances in mass screening at airports and hospitals are reviewed. Moreover, an overview of novel machine learning methods for IRI data analysis, aimed to identify respiratory diseases, is provided. In addition, IRI-based smart technologies developed to support the healthcare during the COVID-19 pandemic are described. Finally, relevant guidelines to fully exploit IRI for COVID-19 identification are defined, to improve the effectiveness of IRI in the detection of the SARS-CoV-2 infection.
Over recent years, robots are increasingly being employed in several aspects of modern society. Among others, social robots have the potential to benefit education, healthcare, and tourism. To achieve this purpose, robots should be able to engage humans, recognize users’ emotions, and to some extent properly react and "behave" in a natural interaction. Most robotics applications primarily use visual information for emotion recognition, which is often based on facial expressions. However, the display of emotional states through facial expression is inherently a voluntary controlled process that is typical of human–human interaction. In fact, humans have not yet learned to use this channel when communicating with a robotic technology. Hence, there is an urgent need to exploit emotion information channels not directly controlled by humans, such as those that can be ascribed to physiological modulations. Thermal infrared imaging-based affective computing has the potential to be the solution to such an issue. It is a validated technology that allows the non-obtrusive monitoring of physiological parameters and from which it might be possible to infer affective states. This review is aimed to outline the advantages and the current research challenges of thermal imaging-based affective computing for human–robot interaction.
Working memory deficit is a signature of Alzheimer's disease (AD). The free and cued selective reminding test (FCSRT) is a clinical test that quantifies memory deficit for AD diagnosis. However, the diagnostic accuracy of FCSRT may be increased by accompanying it with neuroimaging. Since the test requires doctor-patient interaction, brain monitoring is challenging. Functional near-infrared spectroscopy (fNIRS) could be suited for such a purpose because of the fNIRS flexibility. We investigated whether the complexity, based on sample entropy and multiscale entropy metrics, of the fNIRS signal during FCSRT was correlated with memory deficit in early AD. fNIRS signals were recorded over the prefrontal cortex of healthy and early AD participants. Group differences were tested through Wilcoxon-Mann-Whitney test ([Formula: see text]). At group level, we found significant differences for Brodmann areas 9 and 46. The results, although preliminary, demonstrate the feasibility of performing ecological studies on early AD with fNIRS. This approach may provide a potential neuroimaging-based method for diagnosis of early AD, viable at the doctor's office level, improving test-based diagnosis. The increased entropy of the fNIRS signal in early AD suggests the opportunity for further research on the neurophysiological status in AD and its relevance for clinical symptoms.
Decline in visuo-spatial skills and memory failures are considered symptoms of Alzheimer’s Disease (AD) and they can be assessed at early stages employing clinical tests. However, performance in a single test is generally not indicative of AD. Functional neuroimaging, such as functional Near Infrared Spectroscopy (fNIRS), may be employed during these tests in an ecological setting to support diagnosis. Indeed, neuroimaging should not alter clinical practice allowing free doctor-patient interaction. However, block-designed paradigms, necessary for standard functional neuroimaging analysis, require tests adaptation. Novel signal analysis procedures (e.g., signal complexity evaluation) may be useful to establish brain signals differences without altering experimental conditions. In this study, we estimated fNIRS complexity (through Sample Entropy metric) in frontal cortex of early AD and controls during three tests that assess visuo-spatial and short-term-memory abilities (Clock Drawing Test, Digit Span Test, Corsi Block Tapping Test). A channel-based analysis of fNIRS complexity during the tests revealed AD-induced changes. Importantly, a multivariate analysis of fNIRS complexity provided good specificity and sensitivity to AD. This outcome was compared to cognitive tests performances that were predictive of AD in only one test. Our results demonstrated the capabilities of fNIRS and complexity metric to support early AD diagnosis.
Functional near-infrared spectroscopy (fNIRS) estimates the functional oscillations of oxyhemoglobin and deoxyhemoglobin in the cortex through scalp-located multiwavelength recordings. Hemoglobin oscillations are inferred through temporal changes in continuous-wave (CW) light attenuation. However, because of the diffusive multilayered head tissue structures, the photon path is longer than the source-detector separation, complicating hemoglobin evaluation. This aspect is incorporated in the modified Beer-Lambert law where the source-detector distance is multiplied by the differential pathlength factor (DPF). Since DPF estimation requires photons' time-of-flight information, DPF is assumed a priori in CW-fNIRS. Importantly, errors in the DPF spectrum induce hemoglobin cross talk, which is detrimental for fNIRS. We propose to estimate subject-specific DPF spectral dependence relying on multidistance high-density measurements. The procedure estimates the effective attenuation coefficient (EAC), which is proportional to the geometric mean of absorption and reduced scattering. Since DPF depends on the scattering-to-absorption ratio, EAC limits the spectral dependence assumption to scattering. This approach was compared to a standard frequency-domain multidistance procedure. A good association between the two methods (r 2 ¼ 0.69) was obtained. This approach could estimate low-resolution maps of the DPF spectral dependence through large field of view, high-density systems, reducing hemoglobin cross talk, and increasing fNIRS sensitivity and specificity to brain activity without instrumentation modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.