Background
Posterolateral spinal fusion with autologous bone graft is considered the “gold standard” for lumbar degenerative disc disease (DDD) when surgical treatment is indicated. The potential role of mesenchymal stromal cells (MSCs) to replace the bone graft in this setting has not been fully addressed.
Objective
To analyze the safety, feasibility and potential clinical efficacy of the implantation of autologous MSCs embedded with tricalcium phosphate as a therapeutic alternative to bone graft in patients with DDD during posterolateral spine fusion.
Study design
Phase I/II single-arm prospective clinical trial.
Methods
Eleven patients with monosegmental DDD at L4–L5 or L5–S1 level were included. Autologous bone marrow-derived MSC were expanded in our Good Manufacturing Practice (GMP) Facility and implanted during spinal surgery embedded in a tricalcium phosphate carrier. Monitoring of patients included a postoperative period of 12 months with four visits (after the 1st, 3rd, 6th, and 12th month), with clinical and radiological assessment that included the visual analog scale (VAS), the Oswestry disability index (ODI), the Short-Form Health Survey (SF-36), the vertebral fusion grade observed through a simple Rx, and the evaluation of possible complications or adverse reactions. In addition, all patients were further followed up to 5 years for outcome.
Results
Median age of patients included was 44 years (range 30–58 years), and male/female ratio was (6/5) L4–L5 and L5–S1 DDD was present five and six patients, respectively. Autologous MSCs were expanded in all cases. There were no adverse effects related to cell implantation. Regarding efficacy, both VAS and ODI scores improved after surgery. Radiologically, 80% of patients achieved lumbar fusion at the end of the follow-up. No adverse effects related to the procedure were recorded.
Conclusions
The use of autologous MSCs for spine fusion in patients with monosegmental degenerative disc disease is feasible, safe, and potentially effective.
Trial registration
no. EudraCT:
2010–018335-17
; code Identifier:
NCT01513694
(
clinicaltrials.gov
).
Electronic supplementary material
The online version of this article (10.1186/s13287-019-1166-4) contains supplementary material, which is available to authorized users.
Genetic combinations described have functional implications in the PTGDR promoter activity by changing the transcription factors affinity that will help characterize different risk groups. The differences observed in the transcription factors affinity and in the methylation pattern bring insight into different transcription regulation in these patients. To the best of our knowledge, this is the first work in which the implication of genetic and epigenetic factors of PTGDR has been characterized pointing to putative therapeutic targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.