BackgroundThe main goal of selection is to achieve genetic gain for a population by choosing the best breeders among a set of selection candidates. Since 2013, the use of a high density genotyping chip (600K Affymetrix® Axiom® HD genotyping array) for chicken has enabled the implementation of genomic selection in layer and broiler breeding, but the genotyping costs remain high for a routine use on a large number of selection candidates. It has thus been deemed interesting to develop a low density genotyping chip that would induce lower costs. In this perspective, various simulation studies have been conducted to find the best way to select a set of SNPs for low density genotyping of two laying hen lines.ResultsTo design low density SNP chips, two methodologies, based on equidistance (EQ) or on linkage disequilibrium (LD) were compared. Imputation accuracy was assessed as the mean correlation between true and imputed genotypes. The results showed correlations more sensitive to false imputation of SNPs having low Minor Allele Frequency (MAF) when the EQ methodology was used. An increase in imputation accuracy was obtained when SNP density was increased, either through an increase in the number of selected windows on a chromosome or through the rise of the LD threshold. Moreover, the results varied depending on the type of chromosome (macro or micro-chromosome). The LD methodology enabled to optimize the number of SNPs, by reducing the SNP density on macro-chromosomes and by increasing it on micro-chromosomes. Imputation accuracy also increased when the size of the reference population was increased. Conversely, imputation accuracy decreased when the degree of kinship between reference and candidate populations was reduced. Finally, adding selection candidates’ dams in the reference population, in addition to their sire, enabled to get better imputation results.ConclusionsWhichever the SNP chip, the methodology, and the scenario studied, highly accurate imputations were obtained, with mean correlations higher than 0.83. The key point to achieve good imputation results is to take into account chicken lines’ LD when designing a low density SNP chip, and to include the candidates’ direct parents in the reference population.
Background: Genomic evaluation, based on the use of thousands of genetic markers in addition to pedigree and phenotype information, has become the standard evaluation methodology in dairy cattle breeding programmes over the past several years. Despite the many differences between dairy cattle breeding and poultry breeding, genomic selection seems very promising for the avian sector, and studies are currently being conducted to optimize avian selection schemes. In this optimization perspective, one of the key parameters is to properly predict the accuracy of genomic evaluation in pure line layers. Results: It was observed that genomic evaluation, whether performed on males or females, always proved more accurate than genetic evaluation. The gain was higher when phenotypic information was narrowed, and an augmentation of the size of the reference population led to an increase in accuracy prediction with regard to genomic evaluation. By taking into account the increase of selection intensity and the decrease of the generation interval induced by genomic selection, the expected annual genetic gain would be higher with ancestry-based genomic evaluation of male candidates than with genetic evaluation based on collaterals. This advantage of genomic selection over genetic selection requires more detailed further study for female candidates. Conclusions: In conclusion, in the population studied, the genomic evaluation of egg quality traits of breeding birds at birth seems to be a promising strategy, at least for the selection of males.
With the availability of the 600K Affymetrix Axiom high-density ( HD ) single nucleotide polymorphism ( SNP ) chip, genomic selection has been implemented in broiler and layer chicken. However, the cost of this SNP chip is too high to genotype all selection candidates. A solution is to develop a low-density SNP chip, at a lower price, and to impute all missing markers. But to routinely implement this solution, the impact of imputation on genomic evaluation accuracy must be studied. It is also interesting to study the consequences of the use of low-density SNP chips in genomic evaluation accuracy. In this perspective, the interest of using imputation in genomic selection was studied in a pure layer line. Two low-density SNP chip designs were compared: an equidistant methodology and a methodology based on linkage disequilibrium. Egg weight, egg shell color, egg shell strength, and albumen height were evaluated with single-step genomic best linear unbiased prediction methodology. The impact of imputation errors or the absence of imputation on the ranking of the male selection candidates was assessed with a genomic evaluation based on ancestry. Thus, genomic estimated breeding values ( GEBV ) obtained with imputed HD genotypes or low-density genotypes were compared with GEBV obtained with the HD SNP chip. The relative accuracy of GEBV was also investigated by considering as reference GEBV estimated on the offspring. A limited reordering of the breeders, selected on a multitrait index, was observed. Spearman correlations between GEBV on HD genotypes and GEBV on low-density genotypes (with or without imputation) were always higher than 0.94 with more than 3K SNP. For the genetically closer, top 150 individuals for a specific trait, with imputation, the reordering was reduced with correlation higher than 0.94 with more than 3K SNP. Without imputation, the correlations remained lower than 0.85 with less than 3K and 16K SNP for equidistant and linkage disequilibrium methodology, respectively. The differences in GEBV correlations between both methodologies were never significant. The conclusions were the same for all studied traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.