Cancer treatments have evolved from indiscriminate cytotoxic agents to selective genome- and immune-targeted drugs that have transformed outcomes for some malignancies. 1 Tumor complexity and heterogeneity suggest that the “precision medicine” paradigm of cancer therapy requires treatment to be personalized to the individual patient. 2 – 6 To date, precision oncology trials have been based upon molecular matching with predetermined monotherapies. 7 – 14 Several of these trials have been hindered by very low matching rates, often in the 5–10% range, 15 and low response rates. Low matching rates may be due to the use of limited gene panels, restrictive molecular matching algorithms, lack of drug availability or the deterioration and death of end-stage patients before therapy can be implemented. We hypothesized that personalized treatment with combination therapies would improve outcomes in patients with refractory malignancies. As a first test of this concept, we implemented a cross-institutional, prospective study (I-PREDICT, ) that used tumor DNA sequencing and timely recommendations for individualized treatment with combination therapies. We found that administration of customized multi-drug regimens was feasible, with 49% of consented patients receiving personalized treatment. Targeting of a larger fraction of identified molecular alterations, yielding a higher “matching score,” was correlated with significantly improved disease control rates, as well as longer progression-free and overall survival rates, as compared to when fewer somatic alterations were targeted. Our findings suggest that the current clinical trial paradigm for precision oncology, which pairs one driver mutation with one drug, may be optimized by treating molecularly complex and heterogeneous cancers with combinations of customized agents.
BackgroundStandard therapy for glioblastoma includes surgery, radiotherapy, and temozolomide. This Phase 3 trial evaluates the addition of an autologous tumor lysate-pulsed dendritic cell vaccine (DCVax®-L) to standard therapy for newly diagnosed glioblastoma.MethodsAfter surgery and chemoradiotherapy, patients were randomized (2:1) to receive temozolomide plus DCVax-L (n = 232) or temozolomide and placebo (n = 99). Following recurrence, all patients were allowed to receive DCVax-L, without unblinding. The primary endpoint was progression free survival (PFS); the secondary endpoint was overall survival (OS).ResultsFor the intent-to-treat (ITT) population (n = 331), median OS (mOS) was 23.1 months from surgery. Because of the cross-over trial design, nearly 90% of the ITT population received DCVax-L. For patients with methylated MGMT (n = 131), mOS was 34.7 months from surgery, with a 3-year survival of 46.4%. As of this analysis, 223 patients are ≥ 30 months past their surgery date; 67 of these (30.0%) have lived ≥ 30 months and have a Kaplan-Meier (KM)-derived mOS of 46.5 months. 182 patients are ≥ 36 months past surgery; 44 of these (24.2%) have lived ≥ 36 months and have a KM-derived mOS of 88.2 months. A population of extended survivors (n = 100) with mOS of 40.5 months, not explained by known prognostic factors, will be analyzed further. Only 2.1% of ITT patients (n = 7) had a grade 3 or 4 adverse event that was deemed at least possibly related to the vaccine. Overall adverse events with DCVax were comparable to standard therapy alone.ConclusionsAddition of DCVax-L to standard therapy is feasible and safe in glioblastoma patients, and may extend survival.Trial registration Funded by Northwest Biotherapeutics; Clinicaltrials.gov number: NCT00045968; https://clinicaltrials.gov/ct2/show/NCT00045968?term=NCT00045968&rank=1; initially registered 19 September 2002
IMPORTANCE Copy number alterations in programmed cell death ligand 1 (PDL1 or CD274), programmed cell death 1 ligand 2 (PDCD1LG2 or PDL2), and Janus kinase 2 (JAK2) genes (chromosome 9p24.1) characterize Hodgkin lymphoma, resulting in high response rates to programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) blockade. The prevalence and utility of PDL1 amplification as a response biomarker to PD-1/PD-L1 blockade are unknown in other tumors. OBJECTIVES To examine the prevalence of PDL1 amplification and its utility as a response biomarker to PD-1/PD-L1 blockade in solid tumors. DESIGN, SETTING, AND PARTICIPANTS This retrospective study (October 1, 2012, to October 1, 2017) used a deidentified tumor database from a commercial company and annotated clinical records from a subset of patients treated at a university tertiary referral center. The study analyzed 118 187 tumors from the deidentified database, including a clinically annotated subgroup of 2039 malignant tumors. INTERVENTIONS Comprehensive genomic profiling was performed on all samples to determine PDL1 amplification, microsatellite instability, and tumor mutational burden (TMB). A subset of patients was treated with PD-1/PD-L1 blockade. MAIN OUTCOMES AND MEASURES The prevalence of PDL1 amplification was determined among 118 187 patient samples that underwent next-generation sequencing. Solid tumors treated with checkpoint blockade were evaluated for response and progression-free survival (PFS). RESULTS Of the 118 187 deidentified tumor samples, PDL1 amplifications were identified in 843 (0.7%), including more than 100 types of solid tumors. Most PDL1-amplified tumors (84.8%) had a low to intermediate TMB. PDL1 amplification did not always correlate with high-positive PD-L1 expression by immunohistochemical analysis. Six of 9 patients (66.7%) from 1 center with PDL1-amplified solid tumors had objective responses after checkpoint blockade administration. The median PFS among all treated patients was 15.2 months. Responders included 1 patient with glioblastoma (PFS, ≥5.2 months), 2 patients with head and neck squamous cell cancer (PFS, ≥9 and 15.2 months), 2 patients with metastatic basal cell cancer (PFS, 3.8 and ≥24.1 months), and 1 patient with urothelial cancer (PFS, ≥17.8 months). CONCLUSIONS AND RELEVANCE The results of this study suggest that PDL1 amplification occurs in a small subset of malignant tumors. Additional large-scale, prospective studies of PDL1-amplified cancers are warranted to confirm the responses to checkpoint blockade described herein, even in the absence of microsatellite instability, high PD-L1 expression, and a high TMB.
ImportanceGlioblastoma is the most lethal primary brain cancer. Clinical outcomes for glioblastoma remain poor, and new treatments are needed.ObjectiveTo investigate whether adding autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) to standard of care (SOC) extends survival among patients with glioblastoma.Design, Setting, and ParticipantsThis phase 3, prospective, externally controlled nonrandomized trial compared overall survival (OS) in patients with newly diagnosed glioblastoma (nGBM) and recurrent glioblastoma (rGBM) treated with DCVax-L plus SOC vs contemporaneous matched external control patients treated with SOC. This international, multicenter trial was conducted at 94 sites in 4 countries from August 2007 to November 2015. Data analysis was conducted from October 2020 to September 2021.InterventionsThe active treatment was DCVax-L plus SOC temozolomide. The nGBM external control patients received SOC temozolomide and placebo; the rGBM external controls received approved rGBM therapies.Main Outcomes and MeasuresThe primary and secondary end points compared overall survival (OS) in nGBM and rGBM, respectively, with contemporaneous matched external control populations from the control groups of other formal randomized clinical trials.ResultsA total of 331 patients were enrolled in the trial, with 232 randomized to the DCVax-L group and 99 to the placebo group. Median OS (mOS) for the 232 patients with nGBM receiving DCVax-L was 19.3 (95% CI, 17.5-21.3) months from randomization (22.4 months from surgery) vs 16.5 (95% CI, 16.0-17.5) months from randomization in control patients (HR = 0.80; 98% CI, 0.00-0.94; P = .002). Survival at 48 months from randomization was 15.7% vs 9.9%, and at 60 months, it was 13.0% vs 5.7%. For 64 patients with rGBM receiving DCVax-L, mOS was 13.2 (95% CI, 9.7-16.8) months from relapse vs 7.8 (95% CI, 7.2-8.2) months among control patients (HR, 0.58; 98% CI, 0.00-0.76; P < .001). Survival at 24 and 30 months after recurrence was 20.7% vs 9.6% and 11.1% vs 5.1%, respectively. Survival was improved in patients with nGBM with methylated MGMT receiving DCVax-L compared with external control patients (HR, 0.74; 98% CI, 0.55-1.00; P = .03).Conclusions and RelevanceIn this study, adding DCVax-L to SOC resulted in clinically meaningful and statistically significant extension of survival for patients with both nGBM and rGBM compared with contemporaneous, matched external controls who received SOC alone.Trial RegistrationClinicalTrials.gov Identifier: NCT00045968
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.