Testing restrictions on regression coefficients in linear models often requires correcting the conventional F-test for potential heteroskedasticity or autocorrelation amongst the disturbances, leading to so-called heteroskedasticity and autocorrelation robust test procedures. These procedures have been developed with the purpose of attenuating size distortions and power deficiencies present for the uncorrected F-test. We develop a general theory to establish positive as well as negative finite-sample results concerning the size and power properties of a large class of heteroskedasticity and autocorrelation robust tests. Using these results we show that nonparametrically as well as parametrically corrected F-type tests in time series regression models with stationary disturbances have either size equal to one or nuisance-infimal power equal to zero under very weak assumptions on the covariance model and under generic conditions on the design matrix. In addition we suggest an adjustment procedure based on artificial regressors. This adjustment resolves the problem in many cases in that the so-adjusted tests do not suffer from size distortions. At the same time their power function is bounded away from zero. As a second application we discuss the case of heteroskedastic disturbances.
Autocorrelation robust tests are notorious for suffering from size distortions and power problems. We investigate under which conditions the size of autocorrelation robust tests can be controlled by an appropriate choice of critical value.
We suggest general methods to construct asymptotically uniformly valid confidence intervals post-model-selection. The constructions are based on principles recently proposed by Berk et al. (2013). In particular the candidate models used can be misspecified, the target of inference is model-specific, and coverage is guaranteed for any data-driven model selection procedure. After developing a general theory we apply our methods to practically important situations where the candidate set of models, from which a working model is selected, consists of fixed design homoskedastic or heteroskedastic linear models, or of binary regression models with general link functions. In an extensive simulation study, we find that the proposed confidence intervals perform remarkably well, even when compared to existing methods that are tailored only for specific model selection procedures.MSC 2010 subject classifications: Primary 62F12, 62F25; secondary 62F35, 62J02.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.