This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, environmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include 30 a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram-positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.
The sequencing of euryarchaeal genomes has suggested that the essential protein lysyl-transfer RNA (tRNA) synthetase (LysRS) is absent from such organisms. However, a single 62-kilodalton protein with canonical LysRS activity was purified from Methanococcus maripaludis, and the gene that encodes this protein was cloned. The predicted amino acid sequence of M. maripaludis LysRS is similar to open reading frames of unassigned function in both Methanobacterium thermoautotrophicum and Methanococcus jannaschii but is unrelated to canonical LysRS proteins reported in eubacteria, eukaryotes, and the crenarchaeote Sulfolobus solfataricus. The presence of amino acid motifs characteristic of the Rossmann dinucleotide-binding domain identifies M. maripaludis LysRS as a class I aminoacyl-tRNA synthetase, in contrast to the known examples of this enzyme, which are class II synthetases. These data question the concept that the classification of aminoacyl-tRNA synthetases does not vary throughout living systems.
A new ice nucleation gene from Pseudomonas syringae was isolated and overexpressed as a fully active protein in Escherichia coli in order to gain experimental data about the structure of ice nucleation proteins. No evidence of a signal sequence or secondary glycosylation was found. Differences in the extent of aggregation were shown to modulate the ice nucleation activity. The circular dichroism spectrum of the purified protein indicated the presence of ß-sheet structure. This finding supports a recently proposed hypothetical model for the structure of ice nucleation proteins, which provides a plausible explanation for their aggregation tendency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.