Nucleation of branched actin filaments by the Arp2/3 complex is a conserved process in eukaryotic cells, yet the source of unbranched actin filaments has remained obscure. In yeast, formins stimulate assembly of actin cables independently of Arp2/3. Here, the conserved core of formin homology domains 1 and 2 of Bni1p (Bni1pFH1FH2) was found to nucleate unbranched actin filaments in vitro. Bni1pFH2 provided the minimal region sufficient for nucleation. Unique among actin nucleators, Bni1pFH1FH2 remained associated with the growing barbed ends of filaments. This combination of properties suggests a direct role for formins in regulating nucleation and polarization of unbranched filamentous actin structures.
Abstract. The actin cytoskeleton in budding yeast consists of cortical patches and cables, both of which polarize toward regions of cell growth. Tropomyosin localizes specifically to actin cables and not cortical patches. Upon shifting cells with conditionally defective tropomyosin to restrictive temperatures, actin cables disappear within 1 min and both the unconventional class V myosin Myo2p and the secretory vesicle-associated Rab GTPase Sec4p depolarize rapidly. Bud growth ceases and the mother cell grows isotropically. When returned to permissive temperatures, tropomyosin-containing cables reform within 1 min in polarized arrays. Cable reassembly permits rapid enrichment of Myo2p at the focus of nascent cables as well as the Myo2p-dependent recruitment of Sec4p and the exocyst protein Sec8p, and the initiation of bud emergence. With the loss of actin cables, cortical patches slowly assume an isotropic distribution within the cell and will repolarize only after restoration of cables. Therefore, actin cables respond to polarity cues independently of the overall distribution of cortical patches and are able to directly target the Myo2p-dependent delivery of secretory vesicles and polarization of growth.
Formins have been implicated in the regulation of cytoskeletal structure in animals and fungi. Here we show that the formins Bni1 and Bnr1 of budding yeast stimulate the assembly of actin filaments that function as precursors to tropomyosin-stabilized cables that direct polarized cell growth. With loss of formin function, cables disassemble, whereas increased formin activity causes the hyperaccumulation of cable-like filaments. Unlike the assembly of cortical actin patches, cable assembly requires profilin but not the Arp2/3 complex. Thus formins control a distinct pathway for assembling actin filaments that organize the overall polarity of the cell.
Cell polarity, as reflected by polarized growth and organelle segregation during cell division in yeast, appears to follow a simple hierarchy. On the basis of physical cues from previous cell cycles or stochastic processes, yeast cells select a site for bud emergence that also defines the axis of cell division. Once polarity is established, rho protein-based signal pathways set up a polarized cytoskeleton by activating localized formins to nucleate and assemble polarized actin cables. These serve as tracks for the transport of secretory vesicles, the segregation of the trans Golgi network, the vacuole, peroxisomes, endoplasmic reticulum, mRNAs for cell fate determination, and microtubules that orient the nucleus in preparation for mitosis, all by myosin-Vs encoded by the MYO2 and MYO4 genes. Most of the proteins participating in these processes in yeast are conserved throughout the kingdoms of life, so the emerging models are likely to be generally applicable. Indeed, several parallels to cellular organization in animals are evident.
MYO2 encodes a type V myosin heavy chain needed for the targeting of vacuoles and secretory vesicles to the growing bud of yeast. Here we describe new myo2 alleles containing conditional lethal mutations in the COOH-terminal tail domain. Within 5 min of shifting to the restrictive temperature, the polarized distribution of secretory vesicles is abolished without affecting the distribution of actin or the mutant Myo2p, showing that the tail has a direct role in vesicle targeting. We also show that the actin cable–dependent translocation of Myo2p to growth sites does not require secretory vesicle cargo. Although a fusion protein containing the Myo2p tail also concentrates at growth sites, this accumulation depends on the polarized delivery of secretory vesicles, implying that the Myo2p tail binds to secretory vesicles. Most of the new mutations alter a region of the Myo2p tail conserved with vertebrate myosin Vs but divergent from Myo4p, the myosin V involved in mRNA transport, and genetic data suggest that the tail interacts with Smy1p, a kinesin homologue, and Sec4p, a vesicle-associated Rab protein. The data support a model in which the Myo2p tail tethers secretory vesicles, and the motor transports them down polarized actin cables to the site of exocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.