We model the late evolution and mass loss history of rapidly rotating Wolf-Rayet stars in the mass range 5 M . . . 100 M . We find that quasi-chemically homogeneously evolving single stars computed with enhanced mixing retain very little or no helium and are compatible with Type Ic supernovae. The more efficient removal of core angular momentum and the expected smaller compact object mass in our lower mass models lead to core spins in the range suggested for magnetar driven superluminous supernovae. Our more massive models retain larger specific core angular momenta, expected for long-duration gamma-ray bursts in the collapsar scenario. Due to the absence of a significant He envelope, the rapidly increasing neutrino emission after core helium exhaustion leads to an accelerated contraction of the whole star, inducing a strong spin-up, and centrifugally driven mass loss at rates of up to 10 −2 M yr −1 in the last years to decades before core collapse. Since the angular momentum transport in our lower mass models enhances the envelope spin-up, they show the largest relative amounts of centrifugally enforced mass loss, i.e., up to 25% of the expected ejecta mass. Our most massive models evolve into the pulsational pair-instability regime. We would thus expect signatures of interaction with a C/O-rich circumstellar medium for Type Ic superluminous supernovae with ejecta masses below ∼ 10 M and for the most massive engine-driven explosions with ejecta masses above ∼ 30 M . Signs of such interaction should be observable at early epochs of the supernova explosion, and may be related to bumps observed in the light curves of superluminous supernovae, or to the massive circumstellar CO-shell proposed for Type Ic superluminous supernova Gaia16apd.
Much difficulty has so far prevented the emergence of a consistent scenario for the origin of Type Ib and Ic supernovae (SNe). Either the SN rates or the ejecta masses and composition were in tension with inferred properties from observations. Here, we follow a heuristic approach by examining the fate of helium stars in the mass range from 4 to 12 M⊙, which presumably form in interacting binaries. The helium stars were evolved using stellar wind mass loss rates that agree with observations and which reproduce the observed luminosity range of galactic Wolf-Rayet stars, leading to stellar masses at core collapse in the range from 3 to 5.5 M⊙. We then exploded these models adopting an explosion energy proportional to the ejecta mass, which is roughly consistent with theoretical predictions. We imposed a fixed 56Ni mass and strong mixing. The SN radiation from 3 to 100 d was computed self-consistently, starting from the input stellar models using the time-dependent nonlocal thermodynamic equilibrium radiative-transfer code CMFGEN. By design, our fiducial models yield very similar light curves, with a rise time of about 20 d and a peak luminosity of ~1042.2 erg s−1, which is in line with representative SNe Ibc. The less massive progenitors retain a He-rich envelope and reproduce the color, line widths, and line strengths of a representative sample of SNe Ib, while stellar winds remove most of the helium in the more massive progenitors, whose spectra match typical SNe Ic in detail. The transition between the predicted Ib-like and Ic-like spectra is continuous, but it is sharp, such that the resulting models essentially form a dichotomy. Further models computed with varying explosion energy, 56Ni mass, and long-term power injection from the remnant show that a moderate variation of these parameters can reproduce much of the diversity of SNe Ibc. We conclude that massive stars stripped by a binary companion can account for the vast majority of ordinary Type Ib and Ic SNe and that stellar wind mass loss is the key to removing the helium envelope in the progenitors of SNe Ic.
Context. Ultra-luminous X-ray sources (ULXs) are those X-ray sources located away from the centre of their host galaxy with luminosities exceeding the Eddington limit of a stellar-mass black hole (LX > 1039 erg s−1). Observed X-ray variability suggests that ULXs are X-ray binary systems. The discovery of X-ray pulsations in some of these objects (e.g. M82 X-2) suggests that a certain fraction of the ULX population may have a neutron star as the accretor. Aims. We present systematic modelling of low- and intermediate-mass X-ray binaries (LMXBs and IMXBs; donor-star mass range 0.92–8.0 M⊙ and neutron-star accretors) to explain the formation of this sub-population of ULXs. Methods. Using MESA, we explored the allowed initial parameter space of binary systems consisting of a neutron star and a low- or intermediate-mass donor star that could explain the observed properties of ULXs. These donors are transferring mass at super-Eddington rates while the accretion is limited locally in the accretion disc by the Eddington limit. Thus, our simulations take into account beaming effects and also include stellar rotation, tides, general angular momentum losses, and a detailed and self-consistent calculation of the mass-transfer rate. Results. Exploring the initial parameters that lead to the formation of neutron-star ULXs, we study the conditions that lead to dynamical stability of these systems, which depends strongly on the response of the donor star to mass loss. Using two values for the initial neutron star mass (1.3 M⊙ and 2.0 M⊙), we present two sets of mass-transfer calculation grids for comparison with observations of NS ULXs. We find that LMXBs/IMXBs can produce NS-ULXs with typical time-averaged isotropic-equivalent X-ray luminosities of between 1039 and 1041 erg s−1 on a timescale of up to ∼1.0 Myr for the lower luminosities. Finally, we estimate their likelihood of detection, the types of white-dwarf remnants left behind by the donors, and the total amount of mass accreted by the neutron stars. Conclusions. We show that observed super-Eddington luminosities can be achieved in LMXBs/IMXBs undergoing non-conservative mass transfer while assuming geometrical beaming. We also compare our results to the observed pulsating ULXs and infer their initial parameters. Our results suggest that a large subset of the observed pulsating ULX population can be explained by LMXBs/IMXBs in a super-Eddington mass-transfer phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.