A simple pharmacophore point filter has been developed that discriminates between drug-like and nondrug-like chemical matter. It is based on the observation that nondrugs are often underfunctionalized. Therefore, a minimum count of well-defined pharmacophore points is required to pass the filter. The application of the filter results in 66-69% of subsets of the MDDR database to be classified as drug-like. Furthermore, 61-68% of subsets of the CMC database are classified as drug-like. In contrast, only 36% of the ACD are found to be drug-like. While these results are not quite as good as those obtained with recently described neural net approaches, the method used here has clear advantages. In contrast to a neural net approach and also in contrast to decision tree methods described recently, the pharmacophore filter has been developed by using "chemical wisdom" that is unbiased from fitting the structural content of specific drug databases to prediction models. Similar to decision tree methods, the pharmacophore point filter provides a detailed structural reason for the classification of each molecule as drug or nondrug. The pharmacophore point filter results are compared to neural net filter results. A statistically significant overlap between compounds recognized as drug-like validates both approaches. The pharmacophore point filter complements neural net approaches as well as property profiling approaches used as drug-likeness filters in compound library analysis and design.
The synthesis and structure/activity studies of the effect of varying the "B" group in a series of oxazolidinone antibacterials (I) are described. Two synthetic routes were used: (1) alkylation of aniline with glycidol followed by dialkyl carbonate heterocyclization to afford I (A = H, B = OH), whose arene ring was further elaborated by using electrophilic aromatic substitution methodology; (2) cycloaddition of substituted aryl isocyanates with epoxides to give A and B with a variety of values. I with B = OH or Br were converted to other "B" functionalities by using SN2 methodology. Antibacterial evaluation of compounds I with A = acetyl, isopropyl, methylthio, methylsulfinyl, methylsulfonyl, and sulfonamido and a variety of different "B" groups against Staphylococcus aureus and Enterococcus faecalis concluded that the compounds with B = aminoacyl, and particularly acetamido, were the most active of those examined in each A series, possessing MICs in the range of 0.5-4 micrograms/mL for the most active compounds described.
Utilizing PMO theory, pyracylene is described as a [12]annulene with an internal vinyl cross-link. As such, it should be an unusually good model for a planar [12]annulene. To examine such a hypothesis, the synthesis of pyracylene, 1,2-dibromopyracylene, and 1,2-diphenylpyracylene was achieved. The key step involved a polybenzylic bromination. After introduction of the first bromine, subsequent hydrogen atom removal involved predominantly, if not exclusively, the ¡3-hydrogen trans to that bromine. Iodide-promoted elimination of the thus formed dibromide introduced the crucial bridging double bonds. Polarographic reduction suggested the presence of an empty approximately nonbonding molecular orbital in agreement with the above model. Dramatic support arose from their nmr spectra which show the protons shifted to exceptionally high fields. These abnormal shifts are interpreted in terms of a paramagnetic ring current-in excellent accord with the proposed peripheral electronic model.
The synthesis and structure-activity relationship (SAR) studies of the effect of different polysubstitution patterns in the aromatic ring of 5-(acetamidomethyl)oxazolidinone antibacterials (I) on antibacterial activity are presented. Compounds I were prepared by the six-step synthesis described previously (Gregory, W. A.; et al. J. Med. Chem. [formula: see text] 1989, 32, 1673), electrophilic aromatic substitution reactions of 3-substituted compounds, and functional-group interchange reactions of 3,4-disubstituted compounds. Antibacterial evaluation of compounds I against Staphylococcus aureus and Enterococcus faecalis gave the following results. The 2,4- and 2,5-disubstituted derivatives have weak or no antibacterial activity. Antibacterial activities of 3,4-disubstituted compounds are comparable to those of the 4-monosubstituted analogues for small 3-substituents (smaller than Br), but decline rapidly for larger 3-substituents. 3,4-Annulated derivatives are comparable in activity to their open-chain analogues. 3,5-Disubstituted and 3,4,5- and 2,4,6-trisubstituted derivatives are devoid of antibacterial activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.