Summary 1.Several genetically modified herbicide-tolerant (GMHT) crops have cleared most of the regulatory hurdles required for commercial growing in the United Kingdom. However, concerns have been expressed that their management will have negative impacts on farmland biodiversity as a result of improved control given by the new herbicide regimes of the arable plants that support farmland birds and other species of conservation value. 2. The Farm-Scale Evaluations (FSE) project is testing the null hypothesis that there is no difference between the management of GMHT varieties of beet, oilseed rape and maize and that of comparable conventional varieties in their effect on the abundance and diversity of arable plants and invertebrates. The FSE also aims to estimate the magnitude and consider the implications of any differences that are found. 3. The experimental design of the FSE is a randomized block, with two treatments allocated at random to half-fields. The target sample is around 60-75 fields for each crop, selected to represent variation of geography and intensity of management across Britain. The experimental crops are managed by commercial farmers as if under commercial conditions. 4. Biodiversity indicators have been selected from plants and terrestrial invertebrates to identify differences between crop management regimes that may result in important ecological changes over larger scales of space and time. Field sampling is at fixed points, mainly along transects from the field boundary, starting before the crop is sown and continuing into following crops. 5. Synthesis and applications. The FSE is best considered as an investigation into the effects of contrasting crop management regimes on farmland biodiversity, rather than a study of the effects of genetic modification. It could become a model for future studies of ecological effects of the way we use and manage agricultural land.
Summary1. Carabid beetles are important functional components of many terrestrial ecosystems. Here, we describe the first long-term, wide-scale and quantitative assessment of temporal changes in UK carabid communities, to inform nationwide management aimed at their conservation. 2. Multivariate and mixed models were used to assess temporal trends over a 15-year period, across eleven sites in the UK Environmental Change Network. Sites covered pasture, field margins, chalk downland, woodland and hedgerows in the lowlands, moorland and pasture in the uplands, and grassland, heaths and bogs in montane locations. 3. We found substantial overall declines in carabid biodiversity. Three-quarters of the species studied declined, half of which were estimated to be undergoing population reductions of > 30%, when averaged over 10-year periods. Declines of this magnitude are recognized to be of conservation concern. They are comparable to those reported for butterflies and moths and increase the evidence base showing that insects are undergoing serious and widespread biodiversity losses. 4. Overall trends masked differences between regions and habitats. Carabid population declines (10-year trend, averaged across species) were estimated to be 52% in montane sites, 31% in northern moorland sites and 28% in western pasture sites (with at least 80% of species declining in each case). Conversely, populations in our southern downland site had 10-year increases of 48% on average. Overall, biodiversity was maintained in upland pasture, and populations were mostly stable in woodland and hedgerow sites. 5. Synthesis and applications. Our results highlight the need to assess trends for carabids, and probably other widespread and ubiquitous taxa, across regions and habitats to fully understand losses in biodiversity. Land management should be underpinned by a consideration of how wide-scale environmental drivers interact with habitat structure. The stability of population trends in woodlands and hedgerows of species that are declining elsewhere puts these habitats at the fore-front of integrated landscape management aimed at preserving their ecosystem services.
We evaluated the effects of the herbicide management associated with genetically modified herbicide-tolerant (GMHT) winter oilseed rape (WOSR) on weed and invertebrate abundance and diversity by testing the null hypotheses that there is no difference between the effects of herbicide management of GMHT WOSR and that of comparable conventional varieties. For total weeds, there were few treatment differences between GMHT and conventional cropping, but large and opposite treatment effects were observed for dicots and monocots. In the GMHT treatment, there were fewer dicots and monocots than in conventional crops. At harvest, dicot biomass and seed rain in the GMHT treatment were one-third of that in the conventional, while monocot biomass was threefold greater and monocot seed rain almost fivefold greater in the GMHT treatment than in the conventional. These differential effects persisted into the following two years of the rotation. Bees and Butterflies that forage and select for dicot weeds were less abundant in GMHT WORS management in July. Year totals for Collembola were greater under GMHT management. There were few other treatment effects on invertebrates, despite the marked effects of herbicide management on the weeds.
Summary1. Assuring future food productivity and security will require that better use is made of pest regulation provided by naturally occurring ecological services. However, empirical evidence of large-scale regulatory effects that might be employed in agriculture is still relatively scarce. 2. Using data from 257 conventionally managed arable fields at the UK national scale, we examine whether changes in the long-term store of weed seed in the seedbank are consistent with regulation by seed predatory carabid beetles. 3. We test three expectations of a simple conceptual model for carabid seed predation. The relationships we estimate are consistent with the model and suggest that carabid predation of weed seeds shed onto the soil surface changes the amount of seed returned to the seedbank bringing about seedbank change and regulation. 4. Granivorous and omnivorous carabids regulated seedbank abundance, with effects being observed on monocotyledon seedbank abundance, in all crops, and on total seedbank abundance, in spring maize and winter oilseed rape; effects that were robust across fields with differing pesticide management and between regions of the UK. 5. We found evidence of density dependence, with increasing amounts of seed rain leading to stronger regulation of the seedbank. 6. Our results also suggest that correlations between seed predators and seed rain abundance, which might be used to infer important effects of seed predators, do not provide sufficient evidence to indicate regulation of the weed seedbank. 7. Synthesis and applications. A major challenge for the future is to manage ecological, pest control services in place of current pesticides with little or no additional risk to productivity and food security. Our work shows that carabid seed predators have regulatory effects on the seedbank that appear general and robust across a range of current cropping and farm management situations at the national scale. Environmental Stewardship methods already exist across Europe to enhance carabid numbers in farmland. This means that carabid seed predators fit within a working framework that could be used to promote integrated pest management alongside or even in place of herbicides.
The effects of the management of genetically modified herbicide-tolerant (GMHT) crops on the abundances of aerial and epigeal arthropods were assessed in 66 beet, 68 maize and 67 spring oilseed rape sites as part of the Farm Scale Evaluations of GMHT crops. Most higher taxa were insensitive to differences between GMHT and conventional weed management, but significant effects were found on the abundance of at least one group within each taxon studied. Numbers of butterflies in beet and spring oilseed rape and of Heteroptera and bees in beet were smaller under the relevant GMHT crop management, whereas the abundance of Collembola was consistently greater in all GMHT crops. Generally, these effects were specific to each crop type, reflected the phenology and ecology of the arthropod taxa, were indirect and related to herbicide management. These results apply generally to agriculture across Britain, and could be used in mathematical models to predict the possible long-term effects of the widespread adoption of GMHT technology. The results for bees and butterflies relate to foraging preferences and might or might not translate into effects on population densities, depending on whether adoption leads to forage reductions over large areas. These species, and the detritivore Collembola, may be useful indicator species for future studies of GMHT management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.