The normal cellular form of prion protein (PrPC) is a precursor to the pathogenic protease-resistant forms (PrPSc) believed to cause scrapie, bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob disease. Its amino terminus contains the octapeptide PHGGGWGQ, which is repeated four times and is among the best-preserved regions of mammalian PrPC. Here we show that the amino-terminal domain of PrPC exhibits five to six sites that bind copper (Cu(II)) presented as a glycine chelate. At neutral pH, binding occurs with positive cooperativity, with binding affinity compatible with estimates for extracellular, labile copper. Two lines of independently derived PrPC gene-ablated (Prnp0/0) mice exhibit severe reductions in the copper content of membrane-enriched brain extracts and similar reductions in synaptosomal and endosome-enriched subcellular fractions. Prnp0/0 mice also have altered cellular phenotypes, including a reduction in the activity of copper/zinc superoxide dismutase and altered electrophysiological responses in the presence of excess copper. These findings indicate that PrPC can exist in a Cu-metalloprotein form in vivo.
The prion protein PrPc is a glycoprotein of unknown function normally found in neurons and glia. It is involved in diseases such as bovine spongiform encephalopathy (BSE), scrapie and Creutzfeldt-Jakob disease. PrPSc, an altered isoform of PrPC that is associated with disease, shows greater protease resistance and is part of the infectious agent, the prion. Prion diseases are characterized by neuronal degeneration, gliosis and accumulation of PrPSc. Mice devoid of PrPC are resistant to scrapie. A fragment of human PrP consisting of amino acids 106-126 that forms fibrils in vitro is toxic to cultured neurons. Here we show that this toxic effect requires the presence of microglia which respond to PrP106-126 by increasing their oxygen radical production. The combined direct and microglia-mediated effects of PrP106-126 are toxic to normal neurons but are insufficient to destroy neurons from mice not expressing PrPC.
In obesity-related hypertension, activation of the renin-angiotensin system (RAS) has been reported despite marked fluid volume expansion. Adipose tissue expresses components of the RAS and is markedly expanded in obesity. This study evaluated changes in components of the adipose and systemic RAS in diet-induced obese hypertensive rats. RAS was quantified in adipose tissue and compared with primary sources for the circulating RAS. Male Sprague-Dawley rats were fed either a low-fat (LF; 11% kcal as fat) or moderately high-fat (32% kcal as fat) diet for 11 wk. After 8 wk, rats fed the moderately high-fat diet segregated into obesity-prone (OP) and obesity-resistant (OR) groups based on their body weight gain (body weight: OR, 566 +/- 10; OP, 702 +/- 20 g; P < 0.05). Mean arterial blood pressure was increased in OP rats (LF: 97 +/- 2; OR: 97 +/- 2; OP: 105 +/- 1 mmHg; P < 0.05). Quantification of mRNA expression by real-time PCR demonstrated a selective increase (2-fold) in angiotensinogen gene expression in retroperitoneal adipose tissue from OP vs. OR and LF rats. Similarly, plasma angiotensinogen concentration was increased in OP rats (LF: 390 +/- 48; OR: 355 +/- 24; OP: 530 +/- 22 ng/ml; P < 0.05). In contrast, other components of the RAS were not altered in OP rats. Marked increases in the plasma concentrations of angiotensin peptides were observed in OP rats (angiotensin II: LF: 95 +/- 31; OR: 59 +/- 20; OP: 295 +/- 118 pg/ml; P < 0.05). These results demonstrate increased activity of the adipose and systemic RAS in obesity-related hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.