In citrus, the majority of fine roots are distributed near the soil surface -a region where conditions are frequently dry and temperatures fluctuate considerably. To develop a better understanding of the relationship between changes in soil conditions and a plant's below-ground respiratory costs, the effects of temperature and soil drying on citrus root respiration were quantified in controlled greenhouse experiments. Chambers designed for measuring the respiration of individual roots were used. Under moist soil conditions, root respiration in citrus increased exponentially with changes in soil temperature ( Q 10 = 1·8-2·0), provided that the changes in temperature were short-term. However, when temperatures were held constant, root respiration did not increase exponentially with increasing temperatures. Instead, the roots acclimated to controlled temperatures above 23 ∞ ∞ ∞ ∞ C, thereby reducing their metabolism in warmer soils. Under drying soil conditions, root respiration decreased gradually beginning at 6% soil water content and reached a minimum at <2% soil water content in sandy soil. A model was constructed from greenhouse data to predict diurnal patterns of fine root respiration based on temperature and soil water content. The model was then validated in the field using data obtained by CO 2 trapping on root systems of mature citrus trees. The trees were grown at a site where the soil temperature and water content were manipulated. Respiration predicted by the model was in general agreement with observed rates, which indicates the model may be used to estimate entire root system respiration for citrus.
Citrus seedlings were grown in soil columns in which the root system was hydraulically separated into two equal layers; this enabled us to maintain roots in the upper layer without water for 110 d. The columns were placed into waterbaths modified so that soil temperatures in the top layer could be maintained at 25 °C or at 35 °C, while temperature in the bottom layer was maintained at 25 °C. We hypothesized that, if citrus plants were grown in dry soil for an extended period, root mortality would increase if the cost of maintaining the roots was increased by elevating the soil temperature. However, during the drought period we did not observe any root mortality, even at the higher soil temperature. Moreover, we did not find that root respiration was increased by prolonged exposure to drought and higher soil temperature. We did find that root respiration rates slowed in dry soil. Furthermore, when the soil columns were switched from one temperature treatment to another, root respiration rates in wet soil rapidly increased when moved to a higher temperature or rapidly decreased when moved to a lower temperature. But after only 4 d, respiration rates returned to their original level; root respiration in dry soil was not affected by either short-or long-term shifts in soil temperature. Root respiration in citrus appears to acclimate rapidly to changes in soil temperature. Kev-wotds:Citrus votkaineriana: bior-nass allocatior-r; drought; root respiratiorr; root turnover; soil temperature; Volkamer lemon.".
Abundance of invasive plants is often attributed to their ability ot outcompete native species. We compared resource acquisition and allocation of the invasive annual grass Bromus madritensis subsp. rubens with that of two native Mojave Desert annuals, Vulpia octoflora and Descurainia pinnata, in a glasshouse experiment. Each species was grown in monoculture at two densities and two levels of N availability to compare how these annuals capture resources and to understand their relative sensitivities to environmental change. During >4 mo of growth, Bromus used water more rapidly and had greater biomass and N content than the natives, partly because of its greater root-surface area and its exploitation of deep soils. Bromus also had greater N uptake, net assimilation and transpiration rates, and canopy area than Vulpia. Resource use by Bromus was less sensitive to changes in N availability or density than were the natives. The two native species in this study produced numerous small seeds that tended to remain dormant, thus ensuring escape of offspring from unfavorable germination conditions; Bromus produced fewer but larger seeds that readily germinated. Collectively, these traits give Bromus the potential to rapidly establish in diverse habitats of the Mojave Desert, thereby gaining an advantage over coexisting native species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.