Acoustic intensity is a vector quantity described by collocated measurements of acoustic pressure and particle velocity. In an ocean waveguide, the interaction among multipath arrivals of propagating wavefronts manifests unique behavior in the acoustic intensity. The instantaneous intensity, or energy flux, contains two components: a propagating and non-propagating energy flux. The instantaneous intensity is described by the time-dependent complex intensity, where the propagating and non-propagating energy fluxes are modulated by the active and reactive intensity envelopes, respectively. Properties of complex intensity are observed in data collected on a vertical line array during the transverse acoustic variability experiment (TAVEX) that took place in August of 2008, 17 km northeast of the Ieodo ocean research station in the East China Sea, 63 m depth. Parabolic equation (PE) simulations of the TAVEX waveguide supplement the experimental data set and provide a detailed analysis of the spatial structure of the complex intensity. A normalized intensity quantity, the pressure-intensity index, is used to describe features of the complex intensity which have a functional relationship between range and frequency, related to the waveguide invariant. The waveguide invariant is used to describe the spatial structure of intensity in the TAVEX waveguide using data taken at discrete ranges.
Underwater noise from vibratory pile driving was observed using a vertical line array placed at range 16 m from the pile source (water depth 7.5 m), and using single hydrophones at range 417 m on one transect, and range 207 and 436 m on another transect running approximately parallel to a sloping shoreline. The dominant spectral features of the underwater noise are related to the frequency of the vibratory pile driving hammer (typically 15-35 Hz), producing spectral lines at intervals of this frequency. The mean-square pressure versus depth is subsequently studied in third-octave bands. Depth and frequency variations of this quantity observed at the vertical line array are well modeled by a field consisting of an incoherent sum of sources distributed over the water column. Adiabatic mode theory is used to propagate this field to greater ranges and model the observations made along the two depth-varying transects. The effect of shear in the seabed, although small, is also included. Bathymetric refraction on the transect parallel to the shoreline reduced mean-square pressure levels at the 436-m measurement site.
The Intensity Vector Autonomous Recorder (IVAR) is a system that records four coherent channels of acoustic data continuously: one channel for acoustic pressure and three channels associated with a triaxial accelerometer from which acoustic particle velocity is obtained. IVAR recorded the vector acoustic field in broadband signals originating from Signal, Underwater Sound (SUS) (Mk-64) charges deployed at 5-13-km range from the fixed IVAR site (mean depth 74.4 m) as part of the 2017 Seabed Characterization Experiment (SBCEX) designed to study the acoustics of fine-grained muddy sediments. Sufficient geometric dispersion at these ranges permitted unambiguous identification of up to four modes as a function of frequency for frequencies less than 80 Hz. From time-frequency analysis of the dispersed arrivals, a single mode (n) and single-frequency (f i) properties are identified at peaks in the narrowband scalar field, with time dependence corresponding to mode group speed. At these time-frequency addresses, four quantities derived from the vector acoustic measurements are formed by coherent combination of pressure and velocity channels: first, modal phase speed; second, circularity, a measure of the normalized curl of active intensity; third, depth-dependent mode speed of energy; and fourth, vertical component of reactive intensity normalized by scalar intensity. A means to compute these quantities theoretically is provided, and a comparison of model results based on a notional geoacoustic representation for the SBCEX experimental area consisting of a single low-speed mud layer over a half-space area versus a Pekeris representation based on the same half-space shows a striking difference, with the field observations also clearly at variance with the Pekeris representation. A fundamental property of mode 2, observed at the IVAR location, is a change in sign for circularity and vertical reactive intensity near 37 Hz that is posited as a constraint observation for mode 2 that must be exhibited by any geoacoustic model that includes a low-speed mudlike layer applied to this location.
Elliptical particle motion, often encountered in acoustic fields containing interference between a source signal and its reflections, can be quantified by the degree of circularity, a vector quantity formulated from acoustic particle velocity, or vector intensity measurements. Acoustic analysis based on the degree of circularity is expected to find application in ocean waveguides as its spatial dependence relates to the acquisition geometry, water column sound speed, surface conditions, and bottom properties. Vector sensor measurements from a laboratory experiment are presented to demonstrate the depth dependence of both the degree of circularity and an approximate formulation based on vertical intensity measurements. The approximation is applied to vertical intensity field measurements made in a 2006 experiment off the New Jersey coast (in waters 80 m deep) to demonstrate the effect of sediment structure on the range dependence of the degree of circularity. The mathematical formulation presented here establishes the framework to readily compute the degree of circularity from experimental measurements; the experimental examples are provided as evidence of the spatial and frequency dependence of this fundamental vector property.
The Intensity Vector Autonomous Recorder (IVAR) simultaneously measures acoustic particle velocity and pressure. IVAR was deployed during the 2017 Seabed Characterization Experiment (SBCEX) with the primary objective to study sound propagation in fine-grained, muddy sediments. In this study a Bayesian inversion framework is applied to ship underwater noise recorded by IVAR. The data are relative phase of pressure and vertical particle velocity, a quantity that is independent of the ship noise source spectrum. Inversion estimates for the sediment layer and underlying basement properties are in agreement with other reports from SBCEX.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.