Some have claimed that the medial prefrontal cortex (mPFC) mediates decision making. Others suggest mPFC is selectively involved in the retrieval of remote long-term memory. Yet others suggests mPFC supports memory and consolidation on time-scales ranging from seconds to days. How can all these roles be reconciled? We propose that the function of the mPFC is to learn associations between context, locations, events, and corresponding adaptive responses, particularly emotional responses. Thus, the ubiquitous involvement of mPFC in both memory and decision making may be due to the fact that almost all such tasks entail the ability to recall the best action or emotional response to specific events in a particular place and time. An interaction between multiple memory systems may explain the changing importance of mPFC to different types of memories over time. In particular, mPFC likely relies on the hippocampus to support rapid learning and memory consolidation.
As previously shown in the hippocampus and other brain areas, patterns of firing-rate correlations between neurons in the rat medial prefrontal cortex during a repetitive sequence task were preserved during subsequent sleep, suggesting that waking patterns are reactivated. We found that, during sleep, reactivation of spatiotemporal patterns was coherent across the network and compressed in time by a factor of 6 to 7. Thus, when behavioral constraints are removed, the brain's intrinsic processing speed may be much faster than it is in real time. Given recent evidence implicating the medial prefrontal cortex in retrieval of long-term memories, the observed replay may play a role in the process of memory consolidation.
Learning sequences of events (e.g., a-b-c) is conceptually a simple problem that can be solved using asymmetrically linked cell assemblies [e.g., "phase sequences" (Hebb, 1949)], provided that the elements of the sequence are unique. When elements repeat within the sequence, however (e.g., a-b-c-d-b-e), the same element belongs to two separate "contexts," and a more complex sequence encoding mechanism is required to differentiate between the two contexts. Some neural structure must form sequential-context-dependent, or "differential," representations of the two contexts (i.e., b as an element of "a-b-c" as opposed to "d-b-e") to allow the correct choice to be made after the repeated element. To investigate the possible role of hippocampus in complex sequence encoding, rats were trained to remember repeated-location sequences under three conditions: (1) reward was given at each location; (2) during training, moveable barriers were placed at the entry and exit of the repeated segment to direct the rat and were removed once the sequence was learned; and (3) reward was withheld at the entry and exit of the repeated segment. In the first condition, hippocampal ensemble activity did not differentiate the sequential context of the repeated segment, indicating that complex sequences with repeated segments can be learned without differential encoding within the hippocampus. Differential hippocampal encoding was observed, however, under the latter two conditions, suggesting that long-term memory for discriminative cues present only during training, working memory of the most recently visited reinforcement sites, or anticipation of the subsequent reinforcement site can separate hippocampal activity patterns at the same location.
Simple sequences can be represented via asymmetrically linked neural assemblies, provided that the elements of the sequence are unique. When elements repeat, however (e.g., A-B-C-B-A), the same element belongs to two separate "sequential contexts," and a more complex encoding mechanism is required. To enable correct sequence performance, some neural structure must provide a disambiguating signal that differentiates the two sequential contexts (i.e., B as an element of "A-B" as opposed to "C-B"). The disambiguating signal may derive from a form of working memory, or, in some cases, a simple timing mechanism may suffice. To investigate the possible role of medial prefrontal cortex in complex sequence encoding, rats were trained on a spatial sequence containing two adjacent repeated segments (e.g., A-B-C-D-B-C-E). The double-repeat procedure minimized behavioral differences in the second leg (C) of the repeat subsequence that arise in the first leg (B) because of differences in the entry point (e.g., A-B vs D-B). Far more cells were context sensitive along the first leg than along the second (36 vs 9%), and most of the differences were accounted for by systematic variations in the rat's trajectory, which were much larger along the first leg. There is thus little evidence for sequential context-discriminative activity in the medial prefrontal cortex that cannot plausibly be accounted for by context-dependent behavior. The finding that the rodent medial prefrontal cortex is highly sensitive to sensory-behavioral variables raises doubts about previous experiments that purport to show working memoryrelated activity in this region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.