SUMMARY The open‐source CFD library OpenFoam® contains a method for solving free surface Newtonian flows using the Reynolds averaged Navier–Stokes equations coupled with a volume of fluid method. In this paper, it is demonstrated how this has been extended with a generic wave generation and absorption method termed ‘wave relaxation zones’, on which a detailed account is given. The ability to use OpenFoam for the modelling of waves is demonstrated using two benchmark test cases, which show the ability to model wave propagation and wave breaking. Furthermore, the reflection coefficient from outlet relaxation zones is considered for a range of parameters. The toolbox is implemented in C++, and the flexibility in deriving new relaxation methods and implementing new wave theories along with other shapes of the relaxation zone is outlined. Subsequent to the publication of this paper, the toolbox has been made freely available through the OpenFoam‐Extend Community. Copyright © 2011 John Wiley & Sons, Ltd.
[1] Since the 1970s, solitary waves have commonly been used to model tsunamis especially in experimental and mathematical studies. Unfortunately, the link to geophysical scales is not well established, and in this work, we question the geophysical relevance of this paradigm. In part 1, we simulate the evolution of initial rectangular-shaped humps of water propagating large distances over a constant depth. The objective is to clarify under which circumstances the front of the wave can develop into an undular bore with a leading soliton. In this connection, we discuss and test various measures for the threshold distance necessary for nonlinear and dispersive effects to manifest in a transient wave train. In part 2, we simulate the shoaling of long smooth transient and periodic waves on a mild slope and conclude that these waves are effectively non-dispersive. In this connection, we discuss the relevance of finite amplitude solitary wave theory in laboratory studies of tsunamis. We conclude that order-of-magnitude errors in effective temporal and spatial duration occur when this theory is used as an approximation for long waves on a sloping bottom. In part 3, we investigate the phenomenon of disintegration of long waves into shorter waves, which has been observed, for example, in connection with the Indian Ocean tsunami in 2004. This happens if the front of the tsunami becomes sufficiently steep, and as a result, the front turns into an undular bore. We discuss the importance of these very short waves in connection with breaking and runup and conclude that they do not justify a solitary wave model for the bulk tsunami.
In previous computational fluid dynamics studies of breaking waves, there has been a marked tendency to severely over-estimate turbulence levels, both pre- and post-breaking. This problem is most likely related to the previously described (though not sufficiently well recognized) conditional instability of widely used turbulence models when used to close Reynolds-averaged Navier–Stokes (RANS) equations in regions of nearly potential flow with finite strain, resulting in exponential growth of the turbulent kinetic energy and eddy viscosity. While this problem has been known for nearly 20 years, a suitable and fundamentally sound solution has yet to be developed. In this work it is demonstrated that virtually all commonly used two-equation turbulence closure models are unconditionally, rather than conditionally, unstable in such regions. A new formulation of the $k$–$\unicode[STIX]{x1D714}$ closure is developed which elegantly stabilizes the model in nearly potential flow regions, with modifications remaining passive in sheared flow regions, thus solving this long-standing problem. Computed results involving non-breaking waves demonstrate that the new stabilized closure enables nearly constant form wave propagation over long durations, avoiding the exponential growth of the eddy viscosity and inevitable wave decay exhibited by standard closures. Additional applications on breaking waves demonstrate that the new stabilized model avoids the unphysical generation of pre-breaking turbulence which widely plagues existing closures. The new model is demonstrated to be capable of predicting accurate pre- and post-breaking surface elevations, as well as turbulence and undertow velocity profiles, especially during transition from pre-breaking to the outer surf zone. Results in the inner surf zone are similar to standard closures. Similar methods for formally stabilizing other widely used closure models ($k$–$\unicode[STIX]{x1D714}$ and $k$–$\unicode[STIX]{x1D700}$ variants) are likewise developed, and it is recommended that these be utilized in future RANS simulations of surface waves. (In the above $k$ is the turbulent kinetic energy density, $\unicode[STIX]{x1D714}$ is the specific dissipation rate, and $\unicode[STIX]{x1D700}$ is the dissipation.)
Flow and scour around a vertical cylinder exposed to current are investigated by using a three-dimensional numerical model based on incompressible Reynolds-averaged Navier–Stokes equations. The model incorporates (i) k - ω turbulence closure, (ii) vortex-shedding processes, (iii) sediment transport (both bed and suspended load), as well as (iv) bed morphology. The influence of vortex shedding and suspended load on the scour are specifically investigated. For the selected geometry and flow conditions, it is found that the equilibrium scour depth is decreased by 50% when the suspended sediment transport is not accounted for. Alternatively, the effects of vortex shedding are found to be limited to the very early stage of the scour process. Flow features such as the horseshoe vortex, as well as lee-wake vortices, including their vertical frequency variation, are discussed. Large-scale counter-rotating streamwise phase-averaged vortices in the lee wake are likewise demonstrated via numerical flow visualization. These features are linked to scour around a vertical pile in a steady current.
[1] Two parallel experiments involving the evolution and runup of plunging solitary waves on a sloping bed were conducted: (1) a rigid-bed experiment, allowing direct (hot film) measurements of bed shear stresses and (2) a sediment-bed experiment, allowing for the measurement of pore water pressures and for observation of the morphological changes. The two experimental conditions were kept as similar as possible. The experiments showed that the complete sequence of the plunging solitary wave involves the following processes: shoaling and wave breaking; runup; rundown and hydraulic jump; and trailing wave. The bed shear stress measurements showed that the mean bed shear stress increases tremendously (with respect to that in the approaching wave boundary layer), by as much as a factor of 8, in the runup and rundown stages, and that the RMS value of the fluctuating component of the bed shear stress is also affected, by as much as a factor of 2, in the runup and hydraulic jump stages. The pore water pressure measurements showed that the sediment at (or near) the surface of the bed experiences upward directed pressure gradient forces during the down-rush phase. The magnitude of this force can reach values as much as approximately 30% of the submerged weight of the sediment. The experiments further showed that the sediment transport occurs in the sheet flow regime for a substantial portion of the beach covering the area where the entire sequence of the wave breaking takes place. The bed morphology is explained qualitatively in terms of the measured bed shear stress and the pressure gradient forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.