Purpose: To evaluate the preclinical pharmacokinetics and antitumor efficacy of a novel orally bioavailable poly(ADP-ribose) polymerase (PARP) inhibitor, ABT-888. Experimental Design: In vitro potency was determined in a PARP-1 and PARP-2 enzyme assay. In vivo efficacy was evaluated in syngeneic and xenograft models in combination with temozolomide, platinums, cyclophosphamide, and ionizing radiation. Results: ABT-888 is a potent inhibitor of both PARP-1 and PARP-2 with K i s of 5.2 and 2.9 nmol/L, respectively.The compound has good oral bioavailability and crosses the blood-brain barrier. ABT-888 strongly potentiated temozolomide in the B16F10 s.c. murine melanoma model. PARP inhibition dramatically increased the efficacy of temozolomide at ABT-888 doses as low as 3.1 mg/kg/d and a maximal efficacy achieved at 25 mg/kg/d. In the 9L orthotopic rat glioma model, temozolomide alone exhibited minimal efficacy, whereas ABT-888, when combined with temozolomide, significantly slowed tumor progression. In the MX-1breast xenograft model (BRCA1 deletion and BRCA2 mutation), ABT-888 potentiated cisplatin, carboplatin, and cyclophosphamide, causing regression of established tumors, whereas with comparable doses of cytotoxic agents alone, only modest tumor inhibition was exhibited. Finally, ABT-888 potentiated radiation (2 Gy/d  10) in an HCT-116 colon carcinoma model. In each model, ABT-888 did not display single-agent activity. Conclusions: ABT-888 is a potent inhibitor of PARP, has good oral bioavailability, can cross the blood-brain barrier, and potentiates temozolomide, platinums, cyclophosphamide, and radiation in syngeneic and xenograft tumor models. This broad spectrum of chemopotentiation and radiopotentiation makes this compound an attractive candidate for clinical evaluation.poly(ADP-ribose) polymerase (PARP)-1 is the founding member of a family of poly(ADP-ribosyl)ating proteins. All PARP family members are characterized by the ability to poly(ADP-ribosyl)ate protein substrates and all share a catalytic PARP homology domain (1). PARP-1 and the closely related PARP-2 are nuclear proteins and the only PARPs with DNA binding domains. These DNA binding domains localize PARP-1 and PARP-2 to the site of DNA damage serving as DNA damage sensors and signaling molecules for repair. The knockout of PARP-1 is sufficient to significantly impair DNA repair following damage via radiation (2) or cytotoxic (3) insult. The residual PARP-dependent repair activity (f10%) is due to PARP-2 (4, 5). These data imply that inhibition of only PARP-1 and PARP-2 will impair DNA repair following damage and that inhibition of other PARP family members is not required in the process. The functions of other PARP family members remain to be elucidated, but poly(ADP-ribosyl)ation has been implicated in many cellular processes, including differentiation, gene regulation, protein degradation, spindle maintenance, as well as replication and transcription (6).Higher expression of PARP in cancer compared with normal cells has been linked to...
BackgroundAllograft failure is common in lung-transplant recipients and leads to poor outcomes including early death. No reliable clinical tools exist to identify patients at high risk for allograft failure. This study tested the use of donor-derived cell-free DNA (%ddcfDNA) as a sensitive marker of early graft injury to predict impending allograft failure.MethodsThis multicenter, prospective cohort study enrolled 106 subjects who underwent lung transplantation and monitored them after transplantation for the development of allograft failure (defined as severe chronic lung allograft dysfunction [CLAD], retransplantation, and/or death from respiratory failure). Plasma samples were collected serially in the first three months following transplantation and assayed for %ddcfDNA by shotgun sequencing. We computed the average levels of ddcfDNA over three months for each patient (avddDNA) and determined its relationship to allograft failure using Cox-regression analysis.FindingsavddDNA was highly variable among subjects: median values were 3·6%, 1·6% and 0·7% for the upper, middle, and low tertiles, respectively (range 0·1%–9·9%). Compared to subjects in the low and middle tertiles, those with avddDNA in the upper tertile had a 6·6-fold higher risk of developing allograft failure (95% confidence interval 1·6–19·9, p = 0·007), lower peak FEV1 values, and more frequent %ddcfDNA elevations that were not clinically detectable.InterpretationLung transplant patients with early unresolving allograft injury measured via %ddcfDNA are at risk of subsequent allograft injury, which is often clinically silent, and progresses to allograft failure.FundNational Institutes of Health.
This study investigated the effect of abnormal autonomic cardiovascular function on heart rate variability (HRV) in individuals classified into four groups: complete quadriplegia, incomplete quadriplegia, low paraplegia, and non-spinal cord injury (SCI) controls. Measurements were collected at baseline and during provocative maneuvers. Spectral analysis using a fast-Fourier transform algorithm revealed two spectral components of HRV, termed low frequency (LF) and high frequency (HF); the LF-to-HF ratio (estimate of sympathovagal balance) was also calculated. Each group of subjects with quadriplegia exhibited significantly lower spectral components for both baseline and composite provocative measures compared with the non-SCI controls (P < 0.05). In addition, the group with paraplegia demonstrated significantly lower HF baseline and LF composite levels than controls (P < 0.05). No differences were observed among all groups for the LF-to-HF ratio. This consistency in the LF-to-HF ratio suggests that the two autonomic divisions that regulate the cardiovascular system maintain homeostasis even when one component is severely compromised. This is supported by the additional findings of decreased parasympathetic activity in the two groups with quadriplegia and the absence of significant differences among any of the four groups at rest in either heart rate or blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.