Parkinson’s disease (PD) is the second most common neurodegenerative disease, besides Alzheimer’s Disease, characterized by multiple symptoms, including the well-known motor dysfunctions. It is well-established that there are differences in the fecal microbiota composition between Parkinson’s disease (PD) patients and control populations, but the mechanisms underlying these differences are not yet fully understood. To begin to close the gap between description and mechanism we studied the relationship between the microbiota and PD in a model organism, Drosophila melanogaster. First, fecal transfers were performed with a D. melanogaster model of PD that had a mutation in the parkin (park25) gene. Results indicate that the PD model feces had a negative effect on both pupation and eclosion in both control and park25 flies, with a greater effect in PD model flies. Analysis of the microbiota composition revealed differences between the control and park25 flies, consistent with many human studies. Conversely, gnotobiotic treatment of axenic embryos with feces-derived bacterial cultures did not affect eclosure. We speculate this result might be due to similarities in bacterial prevalence between mutant and control feces. Further, we confirmed a bacteria-potentiated impact on mutant and control fly phenotypes by measuring eclosure rate in park25 flies that were mono-associated with members of the fly microbiota. Both the fecal transfer and the mono-association results indicate a host genotype-microbiota interaction. Overall, this study concludes functional effects of the fly microbiota on PD model flies, providing support to the developing body of knowledge regarding the influence of the microbiota on PD.
It is well-established that there are differences in the fecal microbiota composition between Parkinson’s disease (PD) patients and control populations, but the mechanisms underlying these differences are not yet fully understood. To begin to close the gap between description and mechanism we studied the relationship between the microbiota and PD in a model organism, Drosophila melanogaster. First, fecal transfers were performed with a D. melanogaster model of PD that had a mutation in the parkin (park25) gene. Results indicate that the PD model feces had a negative effect on both pupation and eclosion in both control and park25 flies, with a greater effect in PD model flies. Analysis of the microbiota composition revealed differences between the control and park25 flies, consistent with many human studies. Conversely, gnotobiotic treatment of axenic embryos with feces-derived bacterial cultures did not affect eclosure. We speculate this result might be due to similarities in bacterial prevalence between mutant and control feces. Further, we confirmed a bacteria-potentiated impact on mutant and control fly phenotypes by measuring eclosure rate in park25flies that were mono-associated with members of the fly microbiota. Both the fecal transfer and the mono-association results indicate a host genotype-microbiota interaction. Overall, this study concludes functional effects of the fly microbiota on PD model flies, providing support to the developing body of knowledge regarding the influence of the microbiota on PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.