Abstract:Over the past few decades, the concept of resilience has emerged as an important consideration in the planning and management of water infrastructure systems. Accordingly, various resilience measures have been developed for the quantitative evaluation and decision-making of systems. There are, however, numerous considerations and no clear choice of which measure, if any, provides the most appropriate representation of resilience for a given application. This study provides a critical review of quantitative approaches to measure the resilience of water infrastructure systems, with a focus on water resources and distribution systems. A compilation of 11 criteria evaluating 21 selected resilience measures addressing major features of resilience is developed using the Axiomatic Design process. Existing gaps of resilience measures are identified based on the review criteria. The results show that resilience measures have generally paid less attention to cascading damage to interrelated systems, rapid identification of failure, physical damage of system components, and time variation of resilience. Concluding the paper, improvements to resilience measures are recommended. The findings contribute to our understanding of gaps and provide information to help further improve resilience measures of water infrastructure systems.
Authors may post the final draft of their work on open, unrestricted Internet sites or deposit it in an institutional repository when the draft contains a link to the bibliographic record of the published version in the ASCE Civil Engineering Database. Final draft means the version submitted to ASCE after peer review and prior to copyediting or other ASCE production activities; it does not include the copyedited version, the page proof, or a PDF of the published version.
This study presents a new Monte Carlo-based flood inundation modelling framework for estimating probability weighted flood risk using a computationally efficient graphics processing unit (GPU) two dimensional (2D) hydraulic model. The 2D flood model is programmed in the GPU framework providing a unique ability to run numerous simulations in a short period of time, permitting the integration of 2D hydraulic modelling into Monte Carlo analysis. The framework operates by performing many 2D flood simulations of randomly sampled input parameters to develop a spatially varied flood hazard map. The probabilistic framework is demonstrated using a 1% annual probability flood event and simulating 1000 different flood simulations by randomly selected peak flows of the Swannanoa River in Buncombe County, USA. The results, in general, display benefits of probabilistic flood risk approach compared with a single simulation approach. The latter approach underestimated 28% of flood risk relative to the former. As the number of simulations increased from 1 to 1000, areas identified as low danger and judgment zone increased by 87.4% and 36.8% respectively, whereas the high danger zone increased by 9.3%. In conclusion, the new Monte Carlo flood risk modelling framework has the ability to provide improved accuracy of flood risk and greater insight into the spatial distribution of flood risk. Predefined flow directionThe 1D models require prior knowledge of flow directions (e.g. in HEC-RAS, flow direction is represented by the main channel and banks). This is not appropriate in an urban J Flood Risk Management 5 (2012) 37-48
Low-lying coastal areas in the mid-Atlantic region are prone to compound flooding resulting from the co-occurrence of river floods and coastal storm surges. To better understand the contribution of non-linear tide-surge-river interactions to compound flooding, the unstructured-grid Finite Volume Community Ocean Model was applied to simulate coastal storm surge and flooding in the Delaware Bay Estuary in the United States. The model was validated with tide gauge data in the estuary for selected hurricane events. Non-linear interactions between tide-surge-river were investigated using a non-stationary tidal analysis method, which decomposes the interactions’ components at the frequency domain. Model results indicated that tide-river interactions damped semidiurnal tides, while the tide-surge interactions mainly influenced diurnal tides. Tide-river interactions suppressed the water level upstream while tide-surge interaction increased the water level downstream, which resulted in a transition zone of damping and enhancing effects where the tide-surge-river interaction was prominent. Evident compound flooding was observed as a result of non-linear tide-surge-river interactions. Furthermore, sensitivity analysis was carried out to evaluate the effect of river flooding on the non-linear interactions. The transition zone of damping and enhancing effects shifted downstream as the river flow rate increased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.