Methanediol, or methylene glycol, is a product of the liquid phase reaction of water and formaldehyde and is a predicted interstellar grain surface species. Detection of this molecule in a hot core environment would advance the understanding of complex organic chemistry in the interstellar medium, but its laboratory spectroscopic characterization is a prerequisite for such observational searches. This theoretical study investigates the unimolecular decomposition of methanediol, specifically the thermodynamic and kinetic stability of the molecule under typical laboratory and interstellar conditions. Methanediol was found to be thermodynamically stable at temperatures of Ͻ100 K, which is the characteristic temperature range for interstellar grain mantles. The infinite-pressure RRKM unimolecular decomposition rate was found to be Ͻ10 Ϫ18 s Ϫ1 at 300 K, indicating gas phase kinetic stability for typical laboratory and hot core temperatures. Therefore, both laboratory studies of and observational searches for this molecule should be feasible.
Vicinal proton-proton NMR couplings have been used to compare the influences of water and tetrahydrofuran (THF) as solvents on the conformational equilibria of 1,4-butanedioic (succinic) acid and its mono- and dianionic salts. An earlier NMR investigation (Lit, E. S.; Mallon, F. K.; Tsai, H. Y.; Roberts, J. D. J. Am Chem. Soc. 1993, 115, 9563-9567) showed that, in water, the conformational preferences for the gauche conformations for butanedioic acid and its monoanion and dianion were, respectively, approximately 84%, 66%, and 43%, essentially independent of the nature of the cation or concentration. We now report the corresponding gauche percentages calculated in the same way for 0.05 M solutions in THF to be 66%, 90-100%, and 46-64%. Substantial evidence was adduced for the rotational angle between the substituents in the monoanion being approximately 70 degrees. The positions of conformational equilibria of the salts in THF, particularly of the dianion, were found to be rather insensitive to concentration and temperature, but more sensitive to the amount of water present. Ab initio quantum-mechanical calculations for 1,4-butanedioate dianion indicate that, as expected for the gas phase, the trans conformation of the dianion should be heavily favored over the gauche, but, in both THF and water, the gauche conformation is calculated to predominate with rotational angles substantially less than 60 degrees. This conclusion is, in fact, generally consistent with the experimental vicinal proton couplings, which are wholly inconsistent with the trans conformation.
Although numerous quantum calculations have been made over the years of the stabilities of the fluxional isomers of C 4 H 7 ؉ , none have been reported for other than the gas phase (which is unrealistic for these ionic species) that exhibit exceptional fluxional properties in solution. To be sure, quantum-mechanical calculations for solutions are subject to substantial uncertainties, but nonetheless it is important to see whether the trends seen for the gas-phase C 4H7 ؉ species are also found in calculations for polar solutions. Of the C4H 7 ؉ species, commonly designated bisectedcyclopropylcarbinyl 1, unsym-bicyclobutonium 2, sym-bicyclobutonium 3, allylcarbinyl 4, and pyramidal structure 6, the most advanced gas-phase calculations available thus far suggest that the order of stability is 1 > 2 > 3 Ͼ Ͼ 4 Ͼ Ͼ 6 with barriers of only Ϸ1 kcal͞mol for interconversions among 1, 2, and 3. We report here that, when account is taken of solvation, 2 turns out to be slightly more stable than 1 or 3 in polar solvents. The pattern of the overall results is unexpected, in that despite substantial differences in structures and charge distributions between the primary players in the C 4H7 ؉ equilibria and the large differences in solvation energies calculated for the solvents considered, the differential solvent effects from species to species are rather small.
Relative strengths of amide NH...O- and carboxyl OH...O- hydrogen bonds were investigated via conformational analysis of succinamate and monohydrogen succinate anions with the aid of vicinal proton-proton NMR couplings and B3LYP DFT quantum mechanical calculations for a variety of solvents. New experimental results for succinamate are compared with those obtained from previous studies of monohydrogen succinate. While some computational results for monohydrogen succinate were published previously, the results contained herein are the product of a more powerful methodology than that used earlier. The experimental results clearly show that intramolecular hydrogen-bond formation is more favored in aprotic solvents than in protic solvents for both molecules. Furthermore, the preference of the succinate monoanion for the gauche conformation is much stronger in aprotic solvents than that of succinamate, indicating that the OH...O- hydrogen bond is substantially stronger than its NH...O- counterpart, despite the approximately 5 kcal cost for formation of the E configuration of the carboxyl group needed to make an intramolecular hydrogen bond. The actual energy differences between formation of internal hydrogen bonds for monohydrogen succinate and succinamate anion were estimated by comparison of the relative values of K1 of the respective acids in water and DMSO by a procedure first developed by Westheimer. Recent theoretical work with succinamate highlights the necessity of considering substituent orientational degrees of freedom to understand the conformational equilibria of the central CH2-CH2 torsions in disubstituted ethanes. Similar methodology is applied here to succinic acid monoanion, by mapping potential-energy surfaces with respect to the CH2-CH2 torsional, carboxyl-substituent rotational, and carboxyl-proton E/Z isomeric degrees of freedom. Boltzmann populations were compared with gauche populations estimated from the experimentally determined coupling constants. The quantum mechanical results for succinamate show a much weaker tendency toward hydrogen bonding than for the succinic acid monoanion. However, the theoretical methods employed appear to substantially overestimate contributions from intramolecularly hydrogen-bonded structures for the succinic acid monoanion when compared with experimental results. Natural bond orbital analysis, applied to the quantum mechanical wave functions of fully optimized gauche and trans structures, showed a strong correlation between the population of amide sigma*(N-H) and carboxyl sigma*(O-H) antibonding orbitals and apparent hydrogen-bonding behavior.
The mechanism for the formation of hexamethylenetetraamine predicts the formation of aminomethanol from the addition of ammonia to formaldehyde. This molecule subsequently undergoes unimolecular decomposition to form methanimine and water. Aminomethanol is the predicted precursor to interstellar glycine, and is therefore of great interest for laboratory spectroscopic study, which would serve as the basis for observational searches. The height of the water loss barrier is therefore useful in the determination of an appropriate experimental approach for spectroscopic characterization of aminomethanol. We have determined the height of this barrier to be 55 kcal/ mol at ambient temperatures. In addition, we have determined the infinite-pressure Rice-Ramsperger-Kassel-Marcus unimolecular decomposition rate to be Ͻ10 −25 s −1 at 300 K, indicating gas-phase kinetic stability for typical laboratory and hot core temperatures. Therefore, spectroscopic characterization of and observational searches for this molecule should be straightforward provided an efficient formation mechanism can be found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.