Recent progress in large-area synthesis of monolayer molybdenum disulphide, a new two-dimensional direct-bandgap semiconductor, is paving the way for applications in atomically thin electronics. Little is known, however, about the microstructure of this material. Here we have refined chemical vapour deposition synthesis to grow highly crystalline islands of monolayer molybdenum disulphide up to 120 μm in size with optical and electrical properties comparable or superior to exfoliated samples. Using transmission electron microscopy, we correlate lattice orientation, edge morphology and crystallinity with island shape to demonstrate that triangular islands are single crystals. The crystals merge to form faceted tilt and mirror twin boundaries that are stitched together by lines of 8- and 4-membered rings. Density functional theory reveals localized mid-gap states arising from these 8-4 defects. We find that mirror twin boundaries cause strong photoluminescence quenching whereas tilt boundaries cause strong enhancement. Meanwhile, mirror twin boundaries slightly increase the measured in-plane electrical conductivity, whereas tilt boundaries slightly decrease the conductivity.
We have experimentally determined the energies of the ground and first four excited excitonic states of the fundamental optical transition in monolayer WS2, a model system for the growing class of atomically thin two-dimensional semiconductor crystals. From the spectra, we establish a large exciton binding energy of 0.32 eV and a pronounced deviation from the usual hydrogenic Rydberg series of energy levels of the excitonic states. We explain both of these results using a microscopic theory in which the non-local nature of the effective dielectric screening modifies the functional form of the Coulomb interaction. These strong but unconventional electron-hole interactions are expected to be ubiquitous in atomically thin materials.
We present a microscopic theory of neutral excitons and charged excitons (trions) in monolayers of transition metal dichalcogenides, including molybdenum disulfide. Our theory is based on an effective mass model of excitons and trions, parametrized by ab initio calculations and incorporating a proper treatment of screening in two dimensions. The calculated exciton binding energies are in good agreement with high-level many-body computations based on the Bethe-Salpeter equation. Furthermore, our calculations for the more complex trion species compare very favorably with recent experimental measurements, and provide atomistic insight into the microscopic features which determine the trion binding energy.2
Systems far from equilibrium can exhibit complex transitory structures, even when equilibrium fluctuations are mundane. A dramatic example of this phenomenon has recently been demonstrated for thin-film solutions of passivated nanocrystals during the irreversible evaporation of the solvent. The relatively weak attractions between nanocrystals, which are efficiently screened in solution, become manifest as the solvent evaporates, initiating assembly of intricate, slowly evolving structures. Although certain aspects of this aggregation process can be explained using thermodynamic arguments alone, it is in principle a non-equilibrium process. A representation of this process as arising from the phase separation between a dense nanocrystal 'liquid' and dilute nanocrystal 'vapour' captures some of the behaviour observed in experiments, but neglects entirely the role of solvent fluctuations, which can be considerable on the nanometre length scale. Here we present a coarse-grained model of nanoparticle self-assembly that explicitly includes the dynamics of the evaporating solvent. Simulations using this model not only account for all observed spatial and temporal patterns, but also predict network structures that have yet to be explored. Two distinct mechanisms of ordering emerge, corresponding to the homogeneous and heterogeneous limits of evaporation dynamics. Our calculations show how different choices of solvent, nanoparticle size (and identity) and thermodynamic state give rise to the various morphologies of the final structures. The resulting guide for designing statistically patterned arrays of nanoparticles suggests the possibility of fabricating spontaneously organized nanoscale devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.