A number of ways of taxonomizing human learning have been proposed. We examine the evidence for one such proposal, namely, that there exist independent explicit and implicit learning systems. This combines two further distinctions, (1) between learning that takes place with versus without concurrent awareness, and (2) between learning that involves the encoding of instances (or fragments) versus the induction of abstract rules or hypotheses. Implicit learning is assumed to involve unconscious rule learning. We examine the evidence for implicit learning derived from subliminal learning, conditioning, artificial grammar learning, instrumental learning, and reaction times in sequence learning. We conclude that unconscious learning has not been satisfactorily established in any of these areas. The assumption that learning in some of these tasks (e.g., artificial grammar learning) is predominantly based on rule abstraction is questionable. When subjects cannot report the “implicitly learned” rules that govern stimulus selection, this is often because their knowledge consists of instances or fragments of the training stimuli rather than rules. In contrast to the distinction between conscious and unconscious learning, the distinction between instance and rule learning is a sound and meaningful way of taxonomizing human learning. We discuss various computational models of these two forms of learning.
This article reviews research over the past decade concerning the relationship between Pavlovian conditioning and conscious awareness. The review covers autonomic conditioning, conditioning with subliminal stimuli, eyeblink conditioning, conditioning in amnesia, evaluative conditioning, and conditioning under anesthesia. The bulk of the evidence is consistent with the position that awareness is necessary but not sufficient for conditioned performance, although studies suggestive of conditioning without awareness are identified as worthy of further investigation. Many studies have used inadequate measures of awareness, and strategies for increasing validity and sensitivity are discussed. It is concluded that conditioning may depend on the operation of a propositional system associated with consciousness rather than a separate, lower level system.
In the first experiment subjects were presented with a number of sets of trials on each of which they could perform a particular action and observe the occurrence of an outcome in the context of a video game. The contingency between the action and outcome was varied across the different sets of trials. When required to judge the effectiveness of the action in controlling the outcome during a set of trials, subjects assigned positive ratings for a positive contingency and negative ratings for a negative contingency. Furthermore, the magnitude of the ratings was related systematically to the strength of the actual contingency. With a fixed probability of an outcome given the action, judgements of positive contingencies decreased as the likelihood that the outcome would occur without the action was raised. Correspondingly, the absolute value of ratings of negative contingencies was increased both by an increment in the probability of the outcome in the absence of the action and by a decrement in the probability of the outcome following the action. A systematic bias was observed, however, in that positive judgements were given under a non-contingent relationship when the outcome frequency was relatively high. However, this bias could be reduced by giving extended exposure to the non-contingent schedule (Experiment 2). This pattern of contingency judgements can be explained if it is assumed that a process of selective attribution operates, whereby people are less likely to attribute an outcome to some potential target cause if another effective cause is present. Experiments 2 and 3 demonstrated the operation of this process by showing that initially establishing another agent as an effective cause of the outcome subsequently reduced or blocked the extent to which the subjects attributed the outcome to the action. Finally, we argue that the pattern and bias in contingency judgements based upon interactions with a causal process can be explained in terms of contemporary conditioning models of associative learning.
Three experiments investigated whether a process akin to Kamin's (1969) blocking effect would occur with human contingency judgements in the context of a video game. Subjects were presented with sets of trials on each of which they could perform a particular action and observe whether the action produced a particular outcome in a situation in which there was an alternative potential cause of the outcome. In Experiment 1 it was found that prior observation of the relationship between the alternative cause and the outcome did indeed block or reduce learning about the subsequent action-outcome relationship. However, exposure to the relationship between the alternative cause and the outcome after observing the association between the action and the outcome also reduced judgements of the action–outcome contingency (backward blocking), a finding at variance with conditioning theory. In Experiment 2 it was found that, just as is the case with forward blocking, the degree of backward blocking depended on how good a predictor of the outcome the alternative cause was. Finally, in Experiment 3 it was shown that the backward blocking effect was not the result of greater forgetting about the action–outcome relationship in the experimental than in the control condition. These results cast doubt upon the applicability of contemporary theories of conditioning to human contingency judgement.
Delusions are maladaptive beliefs about the world. Based upon experimental evidence that prediction error-a mismatch between expectancy and outcome--drives belief formation, this study examined the possibility that delusions form because of disrupted prediction--error processing. We used fMRI to determine prediction-error-related brain responses in 12 healthy subjects and 12 individuals (7 males) with delusional beliefs. Frontal cortex responses in the patient group were suggestive of disrupted prediction-error processing. Furthermore, across subjects, the extent of disruption was significantly related to an individual's propensity to delusion formation. Our results support a neurobiological theory of delusion formation that implicates aberrant prediction-error signalling, disrupted attentional allocation and associative learning in the formation of delusional beliefs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.