Cattle have been proposed as the natural reservoir of a novel member of the virus family Orthomyxoviridae, which has been tentatively classified as influenza D virus (IDV). Although isolated from sick animals, it is unclear whether IDV causes any clinical disease in cattle. To address this aspect of Koch's postulates, three dairy calves (treatment animals) held in individual pens were inoculated intranasally with IDV strain D/bovine/Mississippi/C00046N/2014. At 1 day postinoculation, a seronegative calf (contact animal) was added to each of the treatment animal pens. The cattle in both treatment and contact groups seroconverted, and virus was detected in their respiratory tracts. Histologically, there was a significant increase in neutrophil tracking in tracheal epithelia of the treatment calves compared to control animals. While infected and contact animals demonstrated various symptoms of respiratory tract infection, they were mild, and the calves in the treatment group did not differ from the controls in terms of heart rate, respiratory rate, or rectal temperature. To mimic zoonotic transmission, two ferrets were exposed to a plastic toy fomite soaked with infected nasal discharge from the treatment calves. These ferrets did not shed the virus or seroconvert. In summary, this study demonstrates that IDV causes a mild respiratory disease upon experimental infection of cattle and can be transmitted effectively among cattle by in-pen contact, but not from cattle to ferrets through fomite exposure. These findings support the hypothesis that cattle are a natural reservoir for the virus. IMPORTANCE A novel influenza virus, tentatively classified as influenza D virus (IDV), was identified in swine, cattle, sheep, and goats. Among these hosts, cattle have been proposed as the natural reservoir. In this study, we show that cattle experimentally infected with IDV can shed virus and transmit it to other cattle through direct contact, but not to ferrets through fomite routes. IDV caused minor clinical signs in the infected cattle, fulfilling another of Koch's postulates for this novel agent, although other objective clinical endpoints were not different from those of control animals. Although the disease observed was mild, IDV induced neutrophil tracking and epithelial attenuation in cattle trachea, which could facilitate coinfection with other pathogens, and in doing so, predispose animals to bovine respiratory disease.
Non-sorbitol-fermenting, -glucuronidase-negative Escherichia coli O157:H7 strains are regarded as a clone complex, and populations from different geographical locations are believed to share a recent common ancestor. Despite their relatedness, high-resolution genotyping methods can detect significant genome variation among different populations. Phylogenetic analysis of high-resolution genotyping data from these strains has shown that subpopulations from geographically unlinked continents can be divided into two primary phylogenetic lineages, termed lineage I and lineage II, and limited studies of the distribution of these lineages suggest there could be differences in their propensity to cause disease in humans or to be transmitted to humans. Because the genotyping methods necessary to discriminate the two lineages are tedious and subjective, these methods are not particularly suited for studying the large sets of strains that are required to systematically evaluate the ecology and transmission characteristics of these lineages. To overcome this limitation, we have developed a lineage-specific polymorphism assay (LSPA) that can readily distinguish between the lineage I and lineage II subpopulations. In the studies reported here, we describe the development of a six-marker test (LSPA-6) and its validation in a side-by-side comparison with octamer-based genome scanning. Analysis of over 1,400 O157:H7 strains with the LSPA-6 demonstrated that five genotypes comprise over 91% of the strains, suggesting that these subpopulations may be widespread.
Cattle are an important reservoir of Escherichia coli O157:H7 leading to contamination of food and water, and subsequent human disease. This pathogen colonizes its hosts by producing several proteins such as Tir and EspA that are secreted by a type III secretion system. These proteins play a role in colonization of the intestine, suggesting that they might be useful targets for the development of a vaccine to reduce levels of this organism in cattle. Vaccination of cattle with proteins secreted by E. coli O157:H7 significantly reduced the numbers of bacteria shed in feces, the numbers of animals that shed, and the duration of shedding in an experimental challenge model. Vaccination of cattle also significantly (P=0.04) reduced the prevalence of E. coli O157:H7 in a clinical trial conducted in a typical feedlot setting. This strategy suggests it is possible to vaccinate cattle to decrease the level of E. coli O157:H7 shedding for the purpose of reducing the risk of human disease.
A new member of the Orthomyxoviridae family, influenza D virus (IDV), was first reported in swine in the Midwest region of the United States. This study aims to extend our knowledge on the IDV epidemiology and to determine the impact of bovine production systems on virus spread. A total of 15 isolates were recovered from surveillance of bovine herds in Mississippi, and two genetic clades of viruses co-circulated in the same herd. Serologic assessment from neonatal beef cattle showed 94% seropositive, and presumed maternal antibody levels were substantially lower in animals over six months of age. Active IDV transmission was shown to occur at locations where young, weaned, and comingled calves were maintained. Serological characterization of archived sera suggested that IDV has been circulating in the Mississippi cattle populations since at least 2004. Continuous surveillance is needed to monitor the evolution and epidemiology of IDV in the bovine population.
Diarrheal feces from three sambar deer and one waterbuck in a wild animal habitat and one white-tailed deer on a wildlife farm in Ohio contained coronavirus particles which were agglutinated by antiserum to bovine coronavirus (BCV) in immune electron microscopy. Three coronavirus strains were isolated in human rectal tumor cells from the feces of the sambar and white-tailed deer and the waterbuck, respectively. Hemagglutination, receptor-destroying enzyme activity, indirect immunofluorescence, hemagglutination inhibition, virus neutralization, and Western blot (immunoblot) tests showed close biological and antigenic relationships among the isolates and with selected BCV strains. Gnotobiotic and colostrum-deprived calves inoculated with each of these isolates developed diarrhea and shed coronavirus in their feces and from their nasal passages. In a serological survey of coronavirus infections among wild deer, 8.7 and 6.6% of sera from mule deer in Wyoming and from white-tailed deer in Ohio, respectively, were seropositive against both of the isolates and selected BCV isolates by indirect immunofluorescence tests. These results confirm the existence of coronaviruses in wild ruminants and suggest that these species may harbor coronavirus strains transmissible to cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.