Severe drought episodes such as those associated with El Niño Southern Oscillation (ENSO) events influence large areas of tropical forest and may become more frequent in the future. One of the most important forest responses to severe drought is tree mortality, which alters forest structure, composition, carbon content, and flammability, and which varies widely. This study tests the hypothesis that tree mortality increases abruptly during drought episodes when plant-available soil water (PAW) declines below a critical minimum threshold. It also examines the effect of tree size, plant life form (palm, liana, tree) and potential canopy position (understory, midcanopy, overstory) on drought-induced plant mortality. A severe, four-year drought episode was simulated by excluding 60% of incoming throughfall during each wet season using plastic panels installed in the understory of a 1-ha forest treatment plot, while a 1-ha control plot received normal rainfall. After 3.2 years, the treatment resulted in a 38% increase in mortality rates across all stems >2 cm dbh. Mortality rates increased 4.5-fold among large trees (>30 cm dbh) and twofold among medium trees (10-30 cm dbh) in response to the treatment, whereas the smallest stems were less responsive. Recruitment rates did not compensate for the elevated mortality of larger-diameter stems in the treatment plot. Overall, lianas proved more susceptible to drought-induced mortality than trees or palms, and potential overstory tree species were more vulnerable than midcanopy and understory species. Large stems contributed to 90% of the pretreatment live aboveground biomass in both plots. Large-tree mortality resulting from the treatment generated 3.4 times more dead biomass than the control plot. The dramatic mortality response suggests significant, adverse impacts on the global carbon cycle if climatic changes follow current trends.
Conservation scientists generally agree that many types of protected areas will be needed to protect tropical forests. But little is known of the comparative performance of inhabited and uninhabited reserves in slowing the most extreme form of forest disturbance: conversion to agriculture. We used satellite-based maps of land cover and fire occurrence in the Brazilian Amazon to compare the performance of large (> 10,000 ha) uninhabited (parks) and inhabited (indigenous lands, extractive reserves, and national forests) reserves. Reserves significantly reduced both deforestation and fire. Deforestation was 1.7 (extractive reserves) to 20 (parks) times higher along the outside versus the inside of the reserve perimeters and fire occurrence was 4 (indigenous lands) to 9 (national forests) times higher. No strong difference in the inhibition of deforestation (p = 0. 11) or fire (p = 0.34) was found between parks and indigenous lands. However, uninhabited reserves tended to be located away from areas of high deforestation and burning rates. In contrast, indigenous lands were often created in response to frontier expansion, and many prevented deforestation completely despite high rates of deforestation along their boundaries. The inhibitory effect of indigenous lands on deforestation was strong after centuries of contact with the national society and was not correlated with indigenous population density. Indigenous lands occupy one-fifth of the Brazilian Amazon-five times the area under protection in parks--and are currently the most important barrier to Amazon deforestation. As the protected-area network expands from 36% to 41% of the Brazilian Amazon over the coming years, the greatest challenge will be successful reserve implementation in high-risk areas of frontier expansion as indigenous lands are strengthened. This success will depend on a broad base of political support.
Moist tropical forests in Amazonia and elsewhere are subjected to increasingly severe drought episodes through the El Niño–Southern Oscillation (ENSO) and possibly through deforestation‐driven reductions in rainfall. The effects of this trend on tropical forest canopy dynamics, emissions of greenhouse gases, and other ecological functions are potentially large but poorly understood. We established a throughfall exclusion experiment in an east‐central Amazon forest (Tapajós National Forest, Brazil) to help understand these effects. After 1‐year intercalibration period of two 1‐ha forest plots, we installed plastic panels and wooden gutters in the understory of one of the plots, thereby excluding ∼890 mm of throughfall during the exclusion period of 2000 (late January to early August) and ∼680 mm thus far in the exclusion period of 2001 (early January to late May). Average daily throughfall reaching the soil during the exclusion period in 2000 was 4.9 and 8.3 mm in the treatment and control plots and was 4.8 and 8.1 mm in 2001, respectively. During the first exclusion period, surface soil water content (0–2 m) declined by ∼100 mm, while deep soil water (2–11 m) was unaffected. During the second exclusion period, which began shortly after the dry season when soil water content was low, surface and deep soil water content declined by ∼140 and 160 mm, respectively. Although this depletion of soil water provoked no detectable increase in leaf drought stress (i.e., no reduction in predawn leaf water potential), photosynthetic capacity declined for some species, the canopy thinned (greater canopy openness and lower leaf area index) during the second exclusion period, stem radial growth of trees <15 m tall declined, and fine litterfall declined in the treatment plot, as did tree fruiting. Aboveground net primary productivity (NPP) (stemwood increment and fine litter production) declined by one fourth, from 15.1 to 11.4 Mg ha−1 yr−1, in the treatment plot and decreased slightly, from 11.9 to 11.5 Mg ha−1 yr−1, in the control plot. Stem respiration varied seasonally and was correlated with stem radial growth but showed no treatment response. The fastest response to the throughfall exclusion, and the surface soil moisture deficits that it provoked, was found in the soil itself. The treatment reduced N2O emissions and increased CH4 consumption relative to the control plot, presumably in response to the improved soil aeration that is associated with soil drying. Our hypothesis that NO emissions would increase following exclusion was not supported. The conductivity and alkalinity of water percolating through the litter layer and through the mineral soil to a depth of 200 cm was higher in the treatment plot, perhaps because of the lower volume of water that was moving through these soil layers in this plot. Decomposition of the litter showed no difference between plots. In sum, the small soil water reductions provoked during the first 2 years of partial throughfall exclusion were sufficient to lower aboveground NPP, including th...
The Amazon Basin experiences severe droughts that may become more common in the future. Little is known of the effects of such droughts on Amazon forest productivity and carbon allocation. We tested the prediction that severe drought decreases litterfall and wood production but potentially has multiple cancelling effects on belowground production within a 7-year partial throughfall exclusion experiment. We simulated an approximately 35-41% reduction in effective rainfall from 2000 through 2004 in a 1 ha plot and compared forest response with a similar control plot. Wood production was the most sensitive component of above-ground net primary productivity (ANPP) to drought, declining by 13% the first year and up to 62% thereafter. Litterfall declined only in the third year of drought, with a maximum difference of 23% below the control plot. Soil CO 2 efflux and its 14 C signature showed no significant treatment response, suggesting similar amounts and sources of belowground production. ANPP was similar between plots in 2000 and declined to a low of 41% below the control plot during the subsequent treatment years, rebounding to only a 10% difference during the first post-treatment year. Live aboveground carbon declined by 32.5 Mg ha K1 through the effects of drought on ANPP and tree mortality. Results of this unreplicated, long-term, large-scale ecosystem manipulation experiment demonstrate that multi-year severe drought can substantially reduce Amazon forest carbon stocks.
Severe drought in moist tropical forests provokes large carbon emissions by increasing forest flammability and tree mortality, and by suppressing tree growth. The frequency and severity of drought in the tropics may increase through stronger El Niñ o Southern Oscillation (ENSO) episodes, global warming, and rainfall inhibition by land use change. However, little is known about the spatial and temporal patterns of drought in moist tropical forests, and the complex relationships between patterns of drought and forest fire regimes, tree mortality, and productivity. We present a simple geographic information system soil water balance model, called RisQue (Risco de Queimada -Fire Risk) for the Amazon basin that we use to conduct an analysis of these patterns for 1996-2001. RisQue features a map of maximum plant-available soil water (PAW max ) developed using 1565 soil texture profiles and empirical relationships between soil texture and critical soil water parameters. PAW is depleted by monthly evapotranspiration (ET) fields estimated using the Penman-Monteith equation and satellite-derived radiation inputs and recharged by monthly rain fields estimated from 266 meteorological stations. Modeled PAW to 10 m depth (PAW 10 m ) was similar to field measurements made in two Amazon forests. During the severe drought of 2001, PAW 10 m fell to below 25% of PAW max in 31% of the region's forests and fell below 50% PAW max in half of the forests. Field measurements and experimental forest fires indicate that soil moisture depletion below 25% PAW max corresponds to a reduction in leaf area index of approximately 25%, increasing forest flammability. Hence, approximately one-third of Amazon forests became susceptible to fire during the 2001 ENSO period. Field measurements also suggest that the ENSO drought of 2001 reduced carbon storage by approximately 0.2 Pg relative to years without severe soil moisture deficits. RisQue is sensitive to spin-up time, rooting depth, and errors in ET estimates. Improvements in our ability to accurately model soil moisture content of Amazon forests will depend upon better understanding of forest rooting depths, which can extend to beyond 15 m. RisQue provides a tool for early detection of forest fire risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.