The psycholinguistic literature has identified two syntactic adaptation effects in language production: rapidly decaying short-term priming and long-lasting adaptation. To explain both effects, we present an ACT-R model of syntactic priming based on a wide-coverage, lexicalized syntactic theory that explains priming as facilitation of lexical access. In this model, two well-established ACT-R mechanisms, base-level learning and spreading activation, account for long-term adaptation and short-term priming, respectively. Our model simulates incremental language production and in a series of modeling studies, we show that it accounts for (a) the inverse frequency interaction; (b) the absence of a decay in long-term priming; and (c) the cumulativity of long-term adaptation. The model also explains the lexical boost effect and the fact that it only applies to short-term priming. We also present corpus data that verify a prediction of the model, that is, that the lexical boost affects all lexical material, rather than just heads.
To advance models of multimodal context, we introduce a simple yet powerful neural architecture for data that combines vision and natural language. The "Bounding Boxes in Text Transformer" (B2T2) also leverages referential information binding words to portions of the image in a single unified architecture. B2T2 is highly effective on the Visual Commonsense Reasoning benchmark 1 , achieving a new state-of-the-art with a 25% relative reduction in error rate compared to published baselines and obtaining the best performance to date on the public leaderboard (as of May 22, 2019). A detailed ablation analysis shows that the early integration of the visual features into the text analysis is key to the effectiveness of the new architecture. A reference implementation of our models is provided 2 .
Syntactic priming effects, modelled as increase in repetition probability shortly after a use of a syntactic rule, have the potential to improve language processing components. We model priming of syntactic rules in annotated corpora of spoken dialogue, extending previous work that was confined to selected constructions. We find that speakers are more receptive to priming from their interlocutor in task-oriented dialogue than in sponaneous conversation. Low-frequency rules are more likely to show priming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.