Non-destructive spectroscopic analysis combined with machine learning rapidly provides information on the identity and content of plasticizers in PVC objects of heritage value. For the first time, a large and diverse collection of more than 100 PVC objects in different degradation stages and of diverse chemical compositions was analysed by chromatographic and spectroscopic techniques to create a dataset used to construct classification and regression models. Accounting for this variety makes the model more robust and reliable for the analysis of objects in museum collections. Six different machine learning classification algorithms were compared to determine the algorithm with the highest classification accuracy of the most common plasticizers, based solely on the spectroscopic data. A classification model capable of the identification of di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, diisononyl phthalate, diisodecyl phthalate, a mixture of diisononyl phthalate and diisodecyl phthalate, and unplasticized PVC was constructed. Additionally, regression models for quantification of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) terephthalate in PVC were built. This study of real-life objects demonstrates that classification and quantification of plasticizers in a general collection of degraded PVC objects is possible, providing valuable data to collection managers.
The suitability of Hansen solubility parameters as descriptors for modelling analyte retention during reversed-phase chromatographic experiments was investigated. A novel theoretical model using Hansen solubility parameters as the basis for a complete mathematical derivation of the model was developed. The theoretical model also includes the cavitation volumes of the analytes, which were calculated using ab initio density functional theory methods. A set of three homologous phthalates was used for experimental data collection and subsequent model construction. The training error and the generalization error of the model were additionally evaluated using a range of chemically diverse analytes. Statistical evaluation of the results revealed that the model is suitable for analyte retention prediction but is limited to the analytes used in the model construction. Therefore, the resulting theoretical model cannot be easily generalized. A retention anomaly attributed to the column temperature and mobile phase composition was experimentally observed and mathematically investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.