The lost-in-space star identification algorithm is able to identify stars without a priori attitude information and is arguably the most critical component of a star sensor system. In this paper, the 2009 survey by Spratling and Mortari is extended and recent lost-in-space star identification algorithms are surveyed. The covered literature is a qualitative representation of the current research in the field. A taxonomy of these algorithms based on their feature extraction method is defined. Furthermore, we show that in current literature the comparison of these algorithms can produce inconsistent conclusions. In order to mitigate these inconsistencies, this paper lists the considerations related to the relative performance evaluation of these algorithms using simulation.
The required precision for attitude determination in spacecraft is increasing, providing a need for more accurate attitude determination sensors. The star sensor or star tracker provides unmatched arc-second precision and with the rise of micro satellites these sensors are becoming smaller, faster and more efficient. The most critical component in the star sensor system is the lost-in-space star identification algorithm which identifies stars in a scene without a priori attitude information. In this paper, we present an efficient lost-in-space star identification algorithm using a neural network and a robust and novel feature extraction method. Since a neural network implicitly stores the patterns associated with a guide star, a database lookup is eliminated from the matching process. The search time is therefore not influenced by the number of patterns stored in the network, making it constant (O(1)). This search time is unrivalled by other star identification algorithms. The presented algorithm provides excellent performance in a simple and lightweight design, making neural networks the preferred choice for star identification algorithms.
Star trackers are navigation sensors that are used for attitude determination of a satellite relative to certain stars. A star tracker is required to be accurate and also consume as little power as possible in order to be used in small satellites. While traditional approaches use lookup tables for identifying stars, the latest advances in star tracking use neural networks for automatic star identification. This manuscript evaluates two low-cost processors capable of running a star identification neural network, the Intel Movidius Myriad 2 Vision Processing Unit (VPU) and the STM32 Microcontroller. The intention of this manuscript is to compare the accuracy and power usage to evaluate the suitability of each device for use in a star tracker. The Myriad 2 VPU and the STM32 Microcontroller have been specifically chosen because of their performance on computer vision algorithms alongside being cost-effective and low power consuming devices. The experimental results showed that the Myriad 2 proved to be efficient and consumed around 1 Watt of power while maintaining 99.08% accuracy with an input including false stars. Comparatively the STM32 was able to deliver comparable accuracy (99.07%) and power measurement results. The proposed experimental setup is beneficial for small spacecraft missions that require low-cost and low power consuming star trackers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.