Jaguar is an ab initio quantum chemical program that specializes in fast electronic structure predictions for molecular systems of medium and large size. Jaguar focuses on computational methods with reasonable computational scaling with the size of the system, such as density functional theory (DFT) and local secondorder Mïller-Plesset perturbation theory. The favorable scaling of the methods and the high efficiency of the program make it possible to conduct routine computations involving several thousand molecular orbitals. This performance is achieved through a utilization of the pseudospectral approximation and several levels of parallelization. The speed advantages are beneficial for applying Jaguar in biomolecular computational modeling. Additionally, owing to its superior wave function guess for transition-metalcontaining systems, Jaguar finds applications in inorganic and bioinorganic chemistry. The emphasis on larger systems and transition metal elements paves the way toward developing Jaguar for its use in materials science modeling. The article describes the historical and new features of Jaguar, such as improved parallelization of many modules, innovations in ab initio pKa prediction, and new semiempirical corrections for nondynamic correlation errors in DFT. Jaguar applications in drug discovery, materials science, force field parameterization, and other areas of computational research are reviewed. Timing benchmarks and other results obtained from the most recent Jaguar code are provided. The article concludes with a discussion of challenges and directions for future development of the program.
Protein effects in the activation of dioxygen by methane monooxygenase (MMO) were investigated by using combined QM/MM and broken-symmetry Density Functional Theory (DFT) methods. The effects of a novel empirical scheme recently developed by our group on the relative DFT energies of the various intermediates in the catalytic cycle are investigated. Inclusion of the protein leads to much better agreement between the experimental and computed geometric structures for the reduced form (MMOH red ). Analysis of the electronic structure of MMOH red reveals that the two iron atoms have distinct environments. Different coordination geometries tested for the MMOH peroxo intermediate reveal that, in the protein environment, the μ-η 2 ,η 2 structure is more stable than the others. Our analysis also shows that the protein helps to drive reactants towards products along the reaction path. Furthermore, these results demonstrate the importance of including the protein environment in our models and the usefulness of the QM/MM approach for accurate modeling of enzymatic reactions. A discrepancy remains in our calculation of the Fe-Fe distance in our model of H Q as compared to EXAFS data obtained several years ago, for which we currently do not have an explanation.
Transition state search is at the center of multiple types of computational chemical predictions related to mechanistic investigations, reactivity and regioselectivity predictions, and catalyst design. The process of finding transition states in practice is, however, a laborious multistep operation that requires significant user involvement. Here, we report a highly automated workflow designed to locate transition states for a given elementary reaction with minimal setup overhead. The only essential inputs required from the user are the structures of the separated reactants and products. The seamless workflow combining computational technologies from the fields of cheminformatics, molecular mechanics, and quantum chemistry automatically finds the most probable correspondence between the atoms in the reactants and the products, generates a transition state guess, launches a transition state search through a combined approach involving the relaxing string method and the quadratic synchronous transit, and finally validates the transition state via the analysis of the reactive chemical bonds and imaginary vibrational frequencies as well as by the intrinsic reaction coordinate method. Our approach does not target any specific reaction type, nor does it depend on training data; instead, it is meant to be of general applicability for a wide variety of reaction types. The workflow is highly flexible, permitting modifications such as a choice of accuracy, level of theory, basis set, or solvation treatment. Successfully located transition states can be used for setting up transition state guesses in related reactions, saving computational time and increasing the probability of success. The utility and performance of the method are demonstrated in applications to transition state searches in reactions typical for organic chemistry, medicinal chemistry, and homogeneous catalysis research. In particular, applications of our code to Michael additions, hydrogen abstractions, Diels-Alder cycloadditions, carbene insertions, and an enzyme reaction model involving a molybdenum complex are shown and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.