The oral cavity harbors one of the most diverse microbiomes in the human body. It has been shown to be the second most complex in the body after the gastrointestinal tract. Upon death, the indigenous microorganisms lead to the decomposition of the carcass. Therefore, the oral cavity and gastrointestinal tract microbiomes play a key role in human decomposition. The aim of the present study is to monitor the microbiome of decaying bodies on a daily basis and to identify signature bacterial taxa, that can improve postmortem interval estimation. Three individuals (one male and two female) donated to the University of Tennessee Forensic Anthropology Center for the W.M. Bass Donated Skeletal Collection were studied. Oral swab samples were taken daily throughout the different stages of cadaveric putrefaction. DNA was extracted and analyzed by next-generation sequencing techniques. The three cadavers showed similar overall successional changes during the decomposition process. Firmicutes and Actinobacteria are the predominant phyla in the fresh stage. The presence of Tenericutes corresponds to bloat stage. Firmicutes is the predominant phylum in advanced decay, but the Firmicutes community is a different one from the predominant Firmicutes of the fresh stage. This study depicts the thanatomicrobiome successional changes in the oral cavity, and highlights its potential use in forensic cases as a quantitative and objective approach to estimate postmortem interval, from an ecological rationale.
One of the fastest cellular responses to genotoxic stress is the formation of poly(ADP-ribose) polymers (PAR) by poly(ADP-ribose)polymerase 1 (PARP1, or ARTD1). PARP1 and its enzymatic product PAR regulate diverse biological processes, such as DNA repair, chromatin remodeling, transcription and cell death. However, the inter-dependent function of the PARP1 protein and its enzymatic activity clouds the mechanism underlying the biological response. We generated a PARP1 knock-in mouse model carrying a point mutation in the catalytic domain of PARP1 (D993A), which impairs the kinetics of the PARP1 activity and the PAR chain complexity in vitro and in vivo, designated as hypo-PARylation. PARP1D993A/D993A mice and cells are viable and show no obvious abnormalities. Despite a mild defect in base excision repair (BER), this hypo-PARylation compromises the DNA damage response during DNA replication, leading to cell death or senescence. Strikingly, PARP1D993A/D993A mice are hypersensitive to alkylation in vivo, phenocopying the phenotype of PARP1 knockout mice. Our study thus unravels a novel regulatory mechanism, which could not be revealed by classical loss-of-function studies, on how PAR homeostasis, but not the PARP1 protein, protects cells and organisms from acute DNA damage.
Brain homeostasis is regulated by the viability and functionality of neurons. HAT (histone acetyltransferase) and HDAC (histone deacetylase) inhibitors have been applied to treat neurological deficits in humans; yet, the epigenetic regulation in neurodegeneration remains elusive. Mutations of HAT cofactor TRRAP (Transformation/translation domain-associated protein) cause human neuropathies, including psychosis, intellectual disability, autism and epilepsy, with unknown mechanism. Here we show that Trrap deletion in Purkinje neurons results in neurodegeneration of old mice. Integrated transcriptomics, epigenomics and proteomics reveal that TRRAP via SP1 conducts a conserved transcriptomic program. TRRAP is required for SP1 binding at the promoter proximity of target genes, especially microtubule dynamics. The ectopic expression of Stathmin3/4 ameliorates defects of TRRAP-deficient neurons, indicating that the microtubule dynamics is particularly vulnerable to the action of SP1 activity. This study unravels a network linking three well-known, but up-to-date unconnected, signaling pathways, namely TRRAP, HAT and SP1 with microtubule dynamics, in neuroprotection.
The quantification of the overall "R-value" of building components is commonly achieved by using numerical models which are generally validated using the standardized Hot Box test. This test setup follows a complex methodology specifically designed to deliver only the R-value. Modern building assemblies are of a level of complexity that many times a single parameter is insufficient to improve the design of the assembly. This paper proposes a simple thermal test setup to analyze both transient and steady state heat flow processes, allowing for effective numerical fitting of parameters that describe all internal heat flow processes. As a result, the contribution of each element of an assembly can be evaluated on its overall insulating capabilities, thereby allowing for a truly optimized design solution. Two wall systems including significant thermal bridges have been chosen to illustrate this methodology. The proposed method, not only delivers a steady state thermal assessment as reliable as the standardised Hot Box procedure, but also allows a precise quantification of internal heat flows and the capability to conduct realistic transient state thermal assessments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.