Summary: We introduce the tool mkESA, an open source program for constructing enhanced suffix arrays (ESAs), striving for low memory consumption, yet high practical speed. mkESA is a user-friendly program written in portable C99, based on a parallelized version of the Deep-Shallow suffix array construction algorithm, which is known for its high speed and small memory usage. The tool handles large FASTA files with multiple sequences, and computes suffix arrays and various additional tables, such as the LCP table (longest common prefix) or the inverse suffix array, from given sequence data.Availability: The source code of mkESA is freely available under the terms of the GNU General Public License (GPL) version 2 at http://bibiserv.techfak.uni-bielefeld.de/mkesa/.Contact: rhomann@techfak.uni-bielefeld.de
Holistic visual navigation methods are an emerging alternative to the ubiquitous feature-based methods. Holistic methods match entire images pixel-wise instead of extracting and comparing local feature descriptors. In this paper we investigate which pixel-wise distance measures are most suitable for the holistic min-warping method with respect to illumination invariance. Two novel approaches are presented: tunable distance measures-weighted combinations of illumination-invariant and illumination-sensitive terms-and two novel forms of "sequential" correlation which are only invariant against intensity shifts but not against multiplicative changes. Navigation experiments on indoor image databases collected at the same locations but under different conditions of illumination demonstrate that tunable distance measures perform optimally by mixing their two portions instead of using the illumination-invariant term alone. Sequential correlation performs best among all tested methods, and as well but much faster in an approximated form. Mixing with an additional illumination-sensitive term is not necessary for sequential correlation. We show that min-warping with approximated sequential correlation can successfully be applied to visual navigation of cleaning robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.