Johne’s disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes weight loss, diarrhoea, and reduced milk yields in clinically infected cattle. Asymptomatic, subclinically infected cattle shed MAP bacteria but are frequently not detected by diagnostic tests. Herein, we compare the metabolite profiles of sera from subclinically infected Holstein–Friesian heifers and antibody binding to selected MAP antigens. The study used biobanked serum samples from 10 naturally MAP-infected and 10 control heifers, sampled monthly from ~ 1 to 19 months of age. Sera were assessed using flow infusion electrospray–high-resolution mass spectrometry (FIE–HRMS) on a Q Exactive hybrid quadrupole–Orbitrap mass spectrometer for high-throughput, sensitive, non-targeted metabolite fingerprinting. Partial least-squares discriminant analyses (PLS-DA) and hierarchical cluster analysis (HCA) of the data discriminated between naturally MAP-infected and control heifers. In total, 33 metabolites that differentially accumulated in naturally MAP-infected heifers compared to controls were identified. Five were significantly elevated within MAP-infected heifers throughout the study, i.e., leukotriene B4, bicyclo prostaglandin E2 (bicyclo PGE2), itaconic acid, 2-hydroxyglutaric acid and N6-acetyl-L-lysine. These findings highlight the potential of metabolomics in the identification of novel MAP diagnostic markers and particular biochemical pathways, which may provide insights into the bovine immune response to MAP.
Although the prokaryotic communities of the rumen microbiome are being uncovered through genome sequencing, little is known about the resident viral populations. Whilst temperate phages can be predicted as integrated prophages when analyzing bacterial and archaeal genomes, the genetics underpinning lytic phages remain poorly characterized. To the five genomes of bacteriophages isolated from rumen-associated samples sequenced and analyzed previously, this study adds a further five novel genomes and predictions gleaned from them to further the understanding of the rumen phage population. Lytic bacteriophages isolated from fresh ovine and bovine fecal and rumen fluid samples were active against the predominant fibrolytic ruminal bacterium Butyrivibrio fibrisolvens. The double stranded DNA genomes were sequenced and reconstructed into single circular complete contigs. Based on sequence similarity and genome distances, the five phages represent four species from three separate genera, consisting of: (1) Butyrivibrio phages Arian and Bo-Finn; (2) Butyrivibrio phages Idris and Arawn; and (3) Butyrivibrio phage Ceridwen. They were predicted to all belong to the Siphoviridae family, based on evidence in the genomes such as size, the presence of the tail morphogenesis module, genes that share similarity to those in other siphovirus isolates and phylogenetic analysis using phage proteomes. Yet, phylogenomic analysis and sequence similarity of the entire phage genomes revealed that these five phages are unique and novel. These phages have only been observed undergoing the lytic lifecycle, but there is evidence in the genomes of phages Arawn and Idris for the potential to be temperate. However, there is no evidence in the genome of the bacterial host Butyrivibrio fibrisolvens of prophage genes or genes that share similarity with the phage genomes.
Introduction Paratuberculosis, commonly known as Johne’s disease, is a chronic granulomatous infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Clinical signs, including reduced milk yields, weight loss and diarrhoea, are typically absent until 2 to 6 years post exposure. Objectives To identify metabolomic changes profiles of MAP challenged Holstein–Friesian (HF) cattle and correlate identified metabolites to haematological and immunological parameters. Methods At approximately 6 weeks of age, calves (n = 9) were challenged with 3.8 × 109 cells of MAP (clinical isolate CIT003) on 2 consecutive days. Additional unchallenged calves (n = 9) formed the control group. The study used biobanked serum from cattle sampled periodically from 3- to 33-months post challenge. The assessment of sera using flow infusion electrospray high resolution mass spectrometry (FIE-HRMS) for high throughput, sensitive, non-targeted metabolite fingerprinting highlighted differences in metabolite levels between the two groups. Results In total, 25 metabolites which were differentially accumulated in MAP challenged cattle were identified, including 20 which displayed correlation to haematology parameters, particularly monocyte levels. Conclusion The targeted metabolites suggest shifts in amino acid metabolism that could reflect immune system activation linked to MAP and as well as differences in phosphocholine levels which could reflect activation of the Th1 (tending towards pro-inflammatory) immune response. If verified by future work, selected metabolites could be used as biomarkers to diagnose and manage MAP infected cattle.
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative organism of Johne’s disease, a chronic granulomatous enteritis of ruminants. We have previously used naturally MAP-infected heifer calves to document metabolomic changes occurring in MAP infections. Herein, we used experimentally MAP-inoculated heifer calves to identify biomarkers for MAP infections. At 2-weeks of age, 20 Holstein–Friesian (HF) calves were experimentally inoculated with MAP. These calves, along with 20 control calves, were sampled biweekly up to 13-months of age and then monthly up to 19-months of age. Sera were assessed using flow infusion electrospray high-resolution mass spectrometry (FIE-HRMS) on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer for high throughput, sensitive, non-targeted metabolite fingerprinting. Partial least squares-discriminate analysis (PLS-DA) and hierarchical cluster analysis (HCA) discriminated between MAP-inoculated and control heifer calves. Out of 34 identified metabolites, six fatty acyls were able to differentiate between experimental groups throughout the study, including 8, 11, 14-eicosatrienoic acid and cis-8, 11, 14, 17-eicosatetraenoic acid which were also detected in our previous study and so further suggested their value as biomarkers for MAP infection. Pathway analysis highlighted the role of the alpha-linoleic acid and linoleic acid metabolism. Within these pathways, two broad types of response, with a rapid increase in some saturated fatty acids and some n-3 polyunsaturated fatty acids (PUFAs) and later n-6 PUFAs, became predominant. This could indicate an initial anti-inflammatory colonisation phase, followed by an inflammatory phase. This study demonstrates the validity of the metabolomic approach in studying MAP infections. Nevertheless, further work is required to define further key events, particularly at a cell-specific level.
Introduction The European badger (Meles meles) is a known wildlife reservoir for bovine tuberculosis (bTB) and a better understanding of the epidemiology of bTB in this wildlife species is required for disease control in both wild and farmed animals. Flow infusion electrospray—high-resolution mass spectrometry (FIE-HRMS) may potentially identify novel metabolite biomarkers based on which new, rapid, and sensitive point of care tests for bTB infection could be developed. Objectives In this foundational study, we engaged on assessing the baseline metabolomic variation in the non-bTB infected badger population (“metabotyping”) across Wales. Methods FIE-HRMS was applied on thoracic fluid samples obtained by post-mortem of bTB negative badgers (n = 285) which were part of the Welsh Government ‘All Wales Badger Found Dead’ study. Results Using principal component analysis and partial least squares—discriminant analyses, the major sources of variation were linked to sex, and to a much lesser extent age, as indicated by tooth wear. Within the female population, variation was seen between lactating and non-lactating individuals. No significant variation linked to the presence of bite wounds, obvious lymphatic lesions or geographical region of origin was observed. Conclusion Future metabolomic work when making comparisons between bTB infected and non-infected badger samples will only need be sex-matched and could focus on males only, to avoid lactation bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.